Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2018 (1)
2017 (2)
2016 (1)
2015 (2)

Sezen, Meltem

Link to this page

Authority KeyName Variants
orcid::0000-0002-4039-0117
  • Sezen, Meltem (6)
Projects

Author's Bibliography

Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023

Lukić, Miodrag J.; Kuzmanović, Maja; Sezen, Meltem; Bakan, Feray; Egelja, Adela; Veselinović, Ljiljana

(2018)

TY  - BOOK
AU  - Lukić, Miodrag J.
AU  - Kuzmanović, Maja
AU  - Sezen, Meltem
AU  - Bakan, Feray
AU  - Egelja, Adela
AU  - Veselinović, Ljiljana
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/5977
T2  - Journal of the European Ceramic Society
T1  - Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023
ER  - 
@misc{
author = "Lukić, Miodrag J. and Kuzmanović, Maja and Sezen, Meltem and Bakan, Feray and Egelja, Adela and Veselinović, Ljiljana",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/5977",
journal = "Journal of the European Ceramic Society",
title = "Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023"
}
Lukić, M. J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A.,& Veselinović, L. (2018). Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023.
Journal of the European Ceramic Society, null. 
Lukić MJ, Kuzmanović M, Sezen M, Bakan F, Egelja A, Veselinović L. Supporting information for the article: Lukić, M.J., Kuzmanović, M., Sezen, M., Bakan, F., Egelja, A., Veselinović, L., 2018. Inert atmosphere processing of hydroxyapatite in the presence of lithium iron phosphate. Journal of the European Ceramic Society 38, 2120–2133. https://doi.org/10.1016/j.jeurceramsoc.2017.12.023. Journal of the European Ceramic Society. 2018;

A facile route for hydroxyapatite densification with an increased heating rate

Lukić, Miodrag J.; Sezen, Meltem; Veljović, Đorđe; Mraković, Ana

(Elsevier, 2017)

TY  - JOUR
AU  - Lukić, Miodrag J.
AU  - Sezen, Meltem
AU  - Veljović, Đorđe
AU  - Mraković, Ana
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2336
UR  - http://dais.sanu.ac.rs/123456789/4611
AB  - The densification behavior of hydroxyapatite nanorods prepared by chemical precipitation method in open reactor conditions was investigated by application of different heating rates. The non-isothermal processing was performed with 2, 10, and 50 °C/min up to 1200 °C and yielded fully dense ceramics. The implementation of the higher heating rate provided grain size refinement from micrometer level for the slowest ramp, down to 250 nm in the case of processing with 50 °C/min, without any drawbacks regarding final density. The relative amount of retained structural hydroxyl groups in sintered ceramics was gradually increased with the heating rate. Furthermore, the qualitative level of optical translucency was increased with a higher heating rate which can be explained by the beneficial alignment of HAp nanorods during the fast heating rate processing, achieved microstructural refinement, and higher amount of structural hydroxyl groups.
PB  - Elsevier
T2  - Materials Letters
T1  - A facile route for hydroxyapatite densification with an increased heating rate
SP  - 12
EP  - 15
VL  - 207
DO  - 10.1016/j.matlet.2017.07.020
ER  - 
@article{
author = "Lukić, Miodrag J. and Sezen, Meltem and Veljović, Đorđe and Mraković, Ana",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/2336, http://dais.sanu.ac.rs/123456789/4611",
abstract = "The densification behavior of hydroxyapatite nanorods prepared by chemical precipitation method in open reactor conditions was investigated by application of different heating rates. The non-isothermal processing was performed with 2, 10, and 50 °C/min up to 1200 °C and yielded fully dense ceramics. The implementation of the higher heating rate provided grain size refinement from micrometer level for the slowest ramp, down to 250 nm in the case of processing with 50 °C/min, without any drawbacks regarding final density. The relative amount of retained structural hydroxyl groups in sintered ceramics was gradually increased with the heating rate. Furthermore, the qualitative level of optical translucency was increased with a higher heating rate which can be explained by the beneficial alignment of HAp nanorods during the fast heating rate processing, achieved microstructural refinement, and higher amount of structural hydroxyl groups.",
publisher = "Elsevier",
journal = "Materials Letters",
title = "A facile route for hydroxyapatite densification with an increased heating rate",
pages = "12-15",
volume = "207",
doi = "10.1016/j.matlet.2017.07.020"
}
Lukić, M. J., Sezen, M., Veljović, Đ.,& Mraković, A. (2017). A facile route for hydroxyapatite densification with an increased heating rate.
Materials LettersElsevier., 207, 12-15. 
https://doi.org/10.1016/j.matlet.2017.07.020
Lukić MJ, Sezen M, Veljović Đ, Mraković A. A facile route for hydroxyapatite densification with an increased heating rate. Materials Letters. 2017;207:12-15

A facile route for hydroxyapatite densification with an increased heating rate

Lukić, Miodrag J.; Sezen, Meltem; Veljović, Đorđe; Mraković, Ana

(Elsevier, 2017)

TY  - JOUR
AU  - Lukić, Miodrag J.
AU  - Sezen, Meltem
AU  - Veljović, Đorđe
AU  - Mraković, Ana
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2336
AB  - The densification behavior of hydroxyapatite nanorods prepared by chemical precipitation method in open reactor conditions was investigated by application of different heating rates. The non-isothermal processing was performed with 2, 10, and 50 °C/min up to 1200 °C and yielded fully dense ceramics. The implementation of the higher heating rate provided grain size refinement from micrometer level for the slowest ramp, down to 250 nm in the case of processing with 50 °C/min, without any drawbacks regarding final density. The relative amount of retained structural hydroxyl groups in sintered ceramics was gradually increased with the heating rate. Furthermore, the qualitative level of optical translucency was increased with a higher heating rate which can be explained by the beneficial alignment of HAp nanorods during the fast heating rate processing, achieved microstructural refinement, and higher amount of structural hydroxyl groups.
PB  - Elsevier
T2  - Materials Letters
T1  - A facile route for hydroxyapatite densification with an increased heating rate
SP  - 12
EP  - 15
VL  - 207
DO  - 10.1016/j.matlet.2017.07.020
ER  - 
@article{
author = "Lukić, Miodrag J. and Sezen, Meltem and Veljović, Đorđe and Mraković, Ana",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/2336",
abstract = "The densification behavior of hydroxyapatite nanorods prepared by chemical precipitation method in open reactor conditions was investigated by application of different heating rates. The non-isothermal processing was performed with 2, 10, and 50 °C/min up to 1200 °C and yielded fully dense ceramics. The implementation of the higher heating rate provided grain size refinement from micrometer level for the slowest ramp, down to 250 nm in the case of processing with 50 °C/min, without any drawbacks regarding final density. The relative amount of retained structural hydroxyl groups in sintered ceramics was gradually increased with the heating rate. Furthermore, the qualitative level of optical translucency was increased with a higher heating rate which can be explained by the beneficial alignment of HAp nanorods during the fast heating rate processing, achieved microstructural refinement, and higher amount of structural hydroxyl groups.",
publisher = "Elsevier",
journal = "Materials Letters",
title = "A facile route for hydroxyapatite densification with an increased heating rate",
pages = "12-15",
volume = "207",
doi = "10.1016/j.matlet.2017.07.020"
}
Lukić, M. J., Sezen, M., Veljović, Đ.,& Mraković, A. (2017). A facile route for hydroxyapatite densification with an increased heating rate.
Materials LettersElsevier., 207, 12-15. 
https://doi.org/10.1016/j.matlet.2017.07.020
Lukić MJ, Sezen M, Veljović Đ, Mraković A. A facile route for hydroxyapatite densification with an increased heating rate. Materials Letters. 2017;207:12-15

PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

Stanković, Ana; Sezen, Meltem; Milenković, Marina; Kaišarević, Sonja; Andrić, Nebojša; Stevanović, Magdalena

(Hindawi, 2016)

TY  - JOUR
AU  - Stanković, Ana
AU  - Sezen, Meltem
AU  - Milenković, Marina
AU  - Kaišarević, Sonja
AU  - Andrić, Nebojša
AU  - Stevanović, Magdalena
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/901
AB  - Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans).
PB  - Hindawi
T2  - Journal of Nanomaterials
T1  - PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity
SP  - 9425289
VL  - 2016
DO  - 10.1155/2016/9425289
ER  - 
@article{
author = "Stanković, Ana and Sezen, Meltem and Milenković, Marina and Kaišarević, Sonja and Andrić, Nebojša and Stevanović, Magdalena",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/901",
abstract = "Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans).",
publisher = "Hindawi",
journal = "Journal of Nanomaterials",
title = "PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity",
pages = "9425289",
volume = "2016",
doi = "10.1155/2016/9425289"
}
Stanković, A., Sezen, M., Milenković, M., Kaišarević, S., Andrić, N.,& Stevanović, M. (2016). PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity.
Journal of NanomaterialsHindawi., 2016, 9425289. 
https://doi.org/10.1155/2016/9425289
Stanković A, Sezen M, Milenković M, Kaišarević S, Andrić N, Stevanović M. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity. Journal of Nanomaterials. 2016;2016:9425289
5
7
8

Synthesis of PLGA /nano-ZnO composite particles for biomedical applications

Stanković, Ana; Lukić, Miodrag J.; Jović, Maja; Sezen, Meltem; Milenković, Marina; Stevanović, Magdalena

(Rovinj : International Association of Physical Chemists, 2015)

TY  - CONF
AU  - Stanković, Ana
AU  - Lukić, Miodrag J.
AU  - Jović, Maja
AU  - Sezen, Meltem
AU  - Milenković, Marina
AU  - Stevanović, Magdalena
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/857
AB  - Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respectively. The as-prepared dispersions were dried in air atmosphere for 24 h. 
The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus.
PB  - Rovinj : International Association of Physical Chemists
C3  - Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK
T1  - Synthesis of PLGA /nano-ZnO composite particles for biomedical applications
ER  - 
@conference{
author = "Stanković, Ana and Lukić, Miodrag J. and Jović, Maja and Sezen, Meltem and Milenković, Marina and Stevanović, Magdalena",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/857",
abstract = "Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respectively. The as-prepared dispersions were dried in air atmosphere for 24 h. 
The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus.",
publisher = "Rovinj : International Association of Physical Chemists",
journal = "Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK",
title = "Synthesis of PLGA /nano-ZnO composite particles for biomedical applications"
}
Stanković, A., Lukić, M. J., Jović, M., Sezen, M., Milenković, M.,& Stevanović, M. (2015). Synthesis of PLGA /nano-ZnO composite particles for biomedical applications.
Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPKRovinj : International Association of Physical Chemists., null. 
Stanković A, Lukić MJ, Jović M, Sezen M, Milenković M, Stevanović M. Synthesis of PLGA /nano-ZnO composite particles for biomedical applications. Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK. 2015;

Simultaneous thermal analysis and dilatometric study of HAp-LiFePO4 system

Lukić, Miodrag J.; Kuzmanović, Maja; Sezen, Meltem; Bakan, Feray; Veselinović, Ljiljana

(Novi Sad : Faculty of Technology, University of Novi Sad, 2015)

TY  - CONF
AU  - Lukić, Miodrag J.
AU  - Kuzmanović, Maja
AU  - Sezen, Meltem
AU  - Bakan, Feray
AU  - Veselinović, Ljiljana
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/744
AB  - Sintered hydroxyapatite bioceramics have been widely studied as a potential material for bone tissue reparation, however, concerning its microstructural and mechanical properties some limits were achieved at the moment. Addition of other materials that could improve functionalities, while preserving inherent advantages of this bioactive ceramics is desirable strategy. In this work, a new idea of addition of lithium iron phosphate as hydroxyapatite sintering aid, provoking liquid phase sintering in the intermediate sintering phase, has been evaluated from the point of view of thermal and dilatometric studies in inert atmosphere, with coupled mass spectroscopy monitoring. Detailed characterization of prepared materials and sintered products is given, confirming the proof of concept. Sintering ability was significantly enhanced and important microstructural features were obtained.
PB  - Novi Sad : Faculty of Technology, University of Novi Sad
C3  - Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad
T1  - Simultaneous thermal analysis and dilatometric study of HAp-LiFePO4 system
SP  - 65
EP  - 65
ER  - 
@conference{
author = "Lukić, Miodrag J. and Kuzmanović, Maja and Sezen, Meltem and Bakan, Feray and Veselinović, Ljiljana",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/744",
abstract = "Sintered hydroxyapatite bioceramics have been widely studied as a potential material for bone tissue reparation, however, concerning its microstructural and mechanical properties some limits were achieved at the moment. Addition of other materials that could improve functionalities, while preserving inherent advantages of this bioactive ceramics is desirable strategy. In this work, a new idea of addition of lithium iron phosphate as hydroxyapatite sintering aid, provoking liquid phase sintering in the intermediate sintering phase, has been evaluated from the point of view of thermal and dilatometric studies in inert atmosphere, with coupled mass spectroscopy monitoring. Detailed characterization of prepared materials and sintered products is given, confirming the proof of concept. Sintering ability was significantly enhanced and important microstructural features were obtained.",
publisher = "Novi Sad : Faculty of Technology, University of Novi Sad",
journal = "Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad",
title = "Simultaneous thermal analysis and dilatometric study of HAp-LiFePO4 system",
pages = "65-65"
}
Lukić, M. J., Kuzmanović, M., Sezen, M., Bakan, F.,& Veselinović, L. (2015). Simultaneous thermal analysis and dilatometric study of HAp-LiFePO4 system.
Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi SadNovi Sad : Faculty of Technology, University of Novi Sad., null, 65-65. 
Lukić MJ, Kuzmanović M, Sezen M, Bakan F, Veselinović L. Simultaneous thermal analysis and dilatometric study of HAp-LiFePO4 system. Programme and book of abstracts / 11th Students' Meeting [and] ESR [Early Stage Researchers] Workshop, COST IC1208 Conference for Young Scientists in Ceramics, October 21-24, 2015, Novi Sad. 2015;:65-65