Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2019 (2)
Version

Lazić, Snežana

Link to this page

Authority KeyName Variants
e54937ff-ac8e-4833-be42-5dcb516c253b
  • Lazić, Snežana (2)
Projects

Author's Bibliography

Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran S.; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Lazić, Snežana; Marković, Smilja; Uskoković, Dragan

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran S.
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Uskoković, Dragan
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6676
AB  - Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019
T1  - Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents
SP  - 76
EP  - 76
ER  - 
@conference{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran S. and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Lazić, Snežana and Marković, Smilja and Uskoković, Dragan",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6676",
abstract = "Hydroxyapatite (HAp) has been widely used as bone reconstruction materials due to their similarity to bone tissue. The improvement of HAp properties was achieved by doping its crystal lattice with different ions. Lanthanides, i.e. Rare Earth Elements (RE) are also suitable for doping HAp. The aim of the presented research was to investigate the possibility of creating lumino-magnetic particles of HAp doped with gadolinium (Gd3+) ions and co-doped with ytterbium/thulium (Yb3+/Tm3+) or europium (Eu3+) ions for potential use in multimodal imaging (MI). Pure HAp (Ca5(PO4)3(OH)), magnetic HAp:Gd (Ca4.85Gd0.15(PO4)3(OH)), and lumino-magnetic HAp:Gd/Yb/Tm (Ca4.85Gd0.03Yb0.1Tm0.02(PO4)3(OH)) and HAp:Gd/Eu (Ca4.94Gd0.02Eu0.04(PO4)3(OH)) particles were synthesized using emulsification process and hydrothermal processing. All synthesized particles had an elongated shape and exhibited a paramagnetic behavior. Reduction of the unit cell volume as a result of replacement of Ca2+ ions by ions with a smaller ionic radius (Gd3+, Yb3+, Tm3+, Eu3+) confirmed by using XRD and Rietveld refined plots. The energy band gap values of the synthesized samples range from 4.93 to 3.18 eV and decrease in the following order: HAp:Gd >HAp>HAp:Gd/Eu>HAp:Gd/Yb/Tm. The results of photoluminescence emission spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu particles showed characteristic transitions of Tm3+ and Eu3+, respectively.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of abstracts / Twenty-first Annual Conference YUCOMAT 2019 & Eleventh World Round Table Conference on Sintering WRTCS 2019, Herceg Novi, Montenegro, September 2-6, 2019",
title = "Hydroxyapatite nano particles doped with Gd3+, Yb3+/Tm3+ and Eu3+ as lumino-magnetic multimodal contrast agents",
pages = "76-76"
}

Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Ignjatović, Nenad; Mančić, Lidija; Vuković, Marina; Stojanović, Zoran; Nikolić, Marko G.; Škapin, Srečo Davor; Jovanović, Sonja; Veselinović, Ljiljana; Uskoković, Vuk; Lazić, Snežana; Marković, Smilja; Lazarević, Miloš M.; Uskoković, Dragan

(Springer Nature, 2019)

TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://www.nature.com/articles/s41598-019-52885-0
UR  - http://dais.sanu.ac.rs/123456789/6950
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
PB  - Springer Nature
T2  - Scientific Reports
T1  - Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
SP  - 1
EP  - 15
VL  - 9
IS  - 1
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
url = "https://www.nature.com/articles/s41598-019-52885-0, http://dais.sanu.ac.rs/123456789/6950",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.",
publisher = "Springer Nature",
journal = "Scientific Reports",
title = "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
pages = "1-15",
volume = "9",
number = "1",
doi = "10.1038/s41598-019-52885-0"
}
1
14
9
14