Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2016 (1)
Type
Version
Access

Andrić, Nebojša

Link to this page

Authority KeyName Variants
61d9abb2-32ec-4086-97d6-fe08d188e1b8
  • Andrić, Nebojša (1)
Projects

Author's Bibliography

PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity

Stanković, Ana; Sezen, Meltem; Milenković, Marina; Kaišarević, Sonja; Andrić, Nebojša; Stevanović, Magdalena

(Hindawi, 2016)

TY  - JOUR
AU  - Stanković, Ana
AU  - Sezen, Meltem
AU  - Milenković, Marina
AU  - Kaišarević, Sonja
AU  - Andrić, Nebojša
AU  - Stevanović, Magdalena
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/901
AB  - Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans).
PB  - Hindawi
T2  - Journal of Nanomaterials
T1  - PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity
SP  - 9425289
VL  - 2016
DO  - 10.1155/2016/9425289
ER  - 
@article{
author = "Stanković, Ana and Sezen, Meltem and Milenković, Marina and Kaišarević, Sonja and Andrić, Nebojša and Stevanović, Magdalena",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/901",
abstract = "Copolymer poly (DL-lactide-co-glycolide) (PLGA) is extensively investigated for various biomedical applications such as controlled drug delivery or carriers in the tissue engineering. In addition, zinc oxide (ZnO) is widely used in biomedicine especially for materials like dental composites, as a constituent of creams for the treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments and so on. Uniform, spherical ZnO nanoparticles (nano-ZnO) have been synthesized via microwave synthesis method. In addition to obtaining nano-ZnO, a further aim was to examine their immobilization in the PLGA polymer matrix (PLGA/nano-ZnO) and this was done by a simple physicochemical solvent/nonsolvent method. The samples were characterized by X-ray diffraction, scanning electron microscopy, laser diffraction particle size analyzer, differential thermal analysis, and thermal gravimetric analysis. The synthesized PLGA/nano-ZnO particles are spherical, uniform, and with diameters below 1 µm. The influence of the different solvents and the drying methods during the synthesis was investigated too. The biocompatibility of the samples is discussed in terms of in vitro toxicity on human hepatoma HepG2 cells by application of MTT assay and the antimicrobial activity was evaluated by broth microdilution method against different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and yeast Candida albicans).",
publisher = "Hindawi",
journal = "Journal of Nanomaterials",
title = "PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity",
pages = "9425289",
volume = "2016",
doi = "10.1155/2016/9425289"
}
Stanković, A., Sezen, M., Milenković, M., Kaišarević, S., Andrić, N.,& Stevanović, M. (2016). PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity.
Journal of NanomaterialsHindawi., 2016, 9425289. 
https://doi.org/10.1155/2016/9425289
Stanković A, Sezen M, Milenković M, Kaišarević S, Andrić N, Stevanović M. PLGA/Nano-ZnO Composite Particles for Use in Biomedical Applications: Preparation, Characterization, and Antimicrobial Activity. Journal of Nanomaterials. 2016;2016:9425289
5
7
8