Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2019 (6)
2018 (3)
Type

Todorović, Zoran B.

Link to this page

Authority KeyName Variants
0b70729e-9390-442a-a721-5bec3802ca9e
  • Todorović, Zoran B. (9)
Projects

Author's Bibliography

Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056

Todorović, Zoran B.; Troter, Dragan Z.; Đokić-Stojanović, Dušica R.; Veličković, Ana V.; Avramović, Jelena M.; Stamenković, Olivera S.; Veselinović, Ljiljana; Veljković, Vlada B.

(2019)

@misc{
author = "Todorović, Zoran B. and Troter, Dragan Z. and Đokić-Stojanović, Dušica R. and Veličković, Ana V. and Avramović, Jelena M. and Stamenković, Olivera S. and Veselinović, Ljiljana and Veljković, Vlada B.",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0016236118317691, http://dais.sanu.ac.rs/123456789/4071",
journal = "Fuel",
title = "Supplementary data for the article: Todorović, Zoran B., Dragan Z. Troter, Dušica R. Đokić-Stojanović, Ana V. Veličković, Jelena M. Avramović, Olivera S. Stamenković, Ljiljana M. Veselinović, and Vlada B. Veljković. 2019. “Optimization of CaO-Catalyzed Sunflower Oil Methanolysis with Crude Biodiesel as a Cosolvent.” Fuel 237 (February): 903–10. https://doi.org/10.1016/j.fuel.2018.10.056"
}

Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study

Đokić-Stojanović, Dušica R.; Todorović, Zoran B.; Troter, Dragan Z.; Stamenković, Olivera S.; Veselinović, Ljiljana; Zdujić, Miodrag; Manojlović, Dragan D.; Veljković, Vlada B.

(2019)

@misc{
author = "Đokić-Stojanović, Dušica R. and Todorović, Zoran B. and Troter, Dragan Z. and Stamenković, Olivera S. and Veselinović, Ljiljana and Zdujić, Miodrag and Manojlović, Dragan D. and Veljković, Vlada B.",
year = "2019",
url = "https://www.ache-pub.org.rs/index.php/HemInd/article/view/587/pdf_1, http://dais.sanu.ac.rs/123456789/7043",
abstract = "Figure D1. Normal probability plot of residuals (a), Cook's distances (b) and predicted and actual values of FAEE content (c); Table D1. Results of sequential model sum of squares test; Table D2. Results of lack of fit test; Table D3. Results of model summary statistics test",
journal = "Hemijska industrija",
title = "Supplementary material to Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study",
pages = "D17-D18",
volume = "73",
number = "6"
}

Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study

Đokić-Stojanović, Dušica R.; Todorović, Zoran B.; Troter, Dragan Z.; Stamenković, Olivera S.; Veselinović, Ljiljana; Zdujić, Miodrag; Manojlović, Dragan D.; Veljković, Vlada B.

(2019)

TY  - JOUR
AU  - Đokić-Stojanović, Dušica R.
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Manojlović, Dragan D.
AU  - Veljković, Vlada B.
PY  - 2019
UR  - https://www.ache-pub.org.rs/index.php/HemInd/article/view/587
UR  - http://dais.sanu.ac.rs/123456789/7041
AB  - Triethanolamine was applied as an efficient „green“ cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4 °C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75 °C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9±1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.
T2  - Hemijska industrija
T1  - Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study
SP  - 351
EP  - 362
VL  - 73
IS  - 6
DO  - 10.2298/HEMIND190822033D
ER  - 
@article{
author = "Đokić-Stojanović, Dušica R. and Todorović, Zoran B. and Troter, Dragan Z. and Stamenković, Olivera S. and Veselinović, Ljiljana and Zdujić, Miodrag and Manojlović, Dragan D. and Veljković, Vlada B.",
year = "2019",
url = "https://www.ache-pub.org.rs/index.php/HemInd/article/view/587, http://dais.sanu.ac.rs/123456789/7041",
abstract = "Triethanolamine was applied as an efficient „green“ cosolvent for biodiesel production by CaO-catalyzed ethanolysis of sunflower oil. The reaction was conducted in a batch stirred reactor and optimized with respect to the reaction temperature (61.6-78.4 °C), the ethanol-to-oil molar ratio (7:1-17:1) and the cosolvent loading (3-36 % of the oil weight) by using a rotatable central composite design (RCCD) combined with the response surface methodology (RSM). The optimal reaction conditions were found to be: the ethanol-to-oil molar ratio of 9:1, the reaction temperature of 75 °C and the cosolvent loading of 30 % to oil weight, which resulted in the predicted and actual fatty acid ethyl ester (FAEE) contents of 98.8 % and 97.9±1.3 %, respectively, achieved within only 20 min of the reaction. Also, high FAEE contents were obtained with expired sunflower oil, hempseed oil and waste lard. X-ray diffraction analysis (XRD) was used to understand the changes in the CaO phase. The CaO catalyst can be used without any treatment in two consecutive cycles. Due to the calcium leaching into the product, an additional purification stage must be included in the overall process.",
journal = "Hemijska industrija",
title = "Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study",
pages = "351-362",
volume = "73",
number = "6",
doi = "10.2298/HEMIND190822033D"
}
1
1
1

Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil

Đokić Stojanović, Dušica R.; Todorović, Zoran B.; Troter, Dragan; Stamenković, Olivera S.; Veselinović, Ljiljana; Zdujić, Miodrag; Manojlović, Dragan D.; Veljković, Vlada B.

(Belgrade : Serbian Chemical Society, 2019)

TY  - JOUR
AU  - Đokić Stojanović, Dušica R.
AU  - Todorović, Zoran B.
AU  - Troter, Dragan
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Manojlović, Dragan D.
AU  - Veljković, Vlada B.
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6183
AB  - Ten organic solvents (triethanolamine, diethanolamine, ethylene glycol, methyl ethyl ketone, n-hexane, triethylamine, ethylene glycol dimethyl ether, glycerol, tetrahydrofuran and dioxane) were applied as cosolvents in the CaO-catalyzed ethanolysis of sunflower oil performed in a batch stirred reactor under the following reaction conditions: temperature 70 °C, ethanol-to-oil mole ratio 12:1, initial catalyst concentration 1.374 mol·L -1 and amount of cosolvent 20 % based on the oil amount. The main goals were to assess the effect of the used cosolvents on the synthesis of fatty acid ethyl esters (FAEE) and to select the most efficient one with respect to the final FAEE content, reaction duration and safety profile. In the absence of any cosolvent, the reaction was rather slow, providing a FAEE content of only 89.7±1.7 % after 4 h. Of the tested cosolvents, diethanolamine, triethanolamine and ethylene glycol significantly accelerated the ethanolysis reaction, whereby the last two provided a final FAEE content of 93.1±2.1 and 94.1±1.5 %, respectively, within 0.5 h. However, because of its safety profile, triethanolamine was selected as the best cosolvent for the ethanolysis of sunflower oil catalyzed by calcined CaO.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil
SP  - 253
EP  - 265
VL  - 84
IS  - 3
DO  - 10.2298/JSC180827007D
ER  - 
@article{
author = "Đokić Stojanović, Dušica R. and Todorović, Zoran B. and Troter, Dragan and Stamenković, Olivera S. and Veselinović, Ljiljana and Zdujić, Miodrag and Manojlović, Dragan D. and Veljković, Vlada B.",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6183",
abstract = "Ten organic solvents (triethanolamine, diethanolamine, ethylene glycol, methyl ethyl ketone, n-hexane, triethylamine, ethylene glycol dimethyl ether, glycerol, tetrahydrofuran and dioxane) were applied as cosolvents in the CaO-catalyzed ethanolysis of sunflower oil performed in a batch stirred reactor under the following reaction conditions: temperature 70 °C, ethanol-to-oil mole ratio 12:1, initial catalyst concentration 1.374 mol·L -1 and amount of cosolvent 20 % based on the oil amount. The main goals were to assess the effect of the used cosolvents on the synthesis of fatty acid ethyl esters (FAEE) and to select the most efficient one with respect to the final FAEE content, reaction duration and safety profile. In the absence of any cosolvent, the reaction was rather slow, providing a FAEE content of only 89.7±1.7 % after 4 h. Of the tested cosolvents, diethanolamine, triethanolamine and ethylene glycol significantly accelerated the ethanolysis reaction, whereby the last two provided a final FAEE content of 93.1±2.1 and 94.1±1.5 %, respectively, within 0.5 h. However, because of its safety profile, triethanolamine was selected as the best cosolvent for the ethanolysis of sunflower oil catalyzed by calcined CaO.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil",
pages = "253-265",
volume = "84",
number = "3",
doi = "10.2298/JSC180827007D"
}
1
1

Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent

Todorović, Zoran B.; Troter, Dragan Z.; Đokić-Stojanović, Dušica R.; Veličković, Ana V.; Avramović, Jelena M.; Stamenković, Olivera S.; Veselinović, Ljiljana; Veljković, Vlada B.

(Elsevier, 2019)

TY  - JOUR
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Đokić-Stojanović, Dušica R.
AU  - Veličković, Ana V.
AU  - Avramović, Jelena M.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Veljković, Vlada B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0016236118317691
UR  - http://dais.sanu.ac.rs/123456789/4070
AB  - Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.
PB  - Elsevier
T2  - Fuel
T1  - Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent
SP  - 903
EP  - 910
VL  - 237
DO  - 10.1016/j.fuel.2018.10.056
ER  - 
@article{
author = "Todorović, Zoran B. and Troter, Dragan Z. and Đokić-Stojanović, Dušica R. and Veličković, Ana V. and Avramović, Jelena M. and Stamenković, Olivera S. and Veselinović, Ljiljana and Veljković, Vlada B.",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0016236118317691, http://dais.sanu.ac.rs/123456789/4070",
abstract = "Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.",
publisher = "Elsevier",
journal = "Fuel",
title = "Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent",
pages = "903-910",
volume = "237",
doi = "10.1016/j.fuel.2018.10.056"
}
15
12
14

Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent

Todorović, Zoran B.; Troter, Dragan Z.; Đokić Stojanović, Dušica R.; Veličković, Ana V.; Avramović, Jelena M.; Stamenković, Olivera S.; Veselinović, Ljiljana; Veljković, Vlada B.

(Elsevier, 2019)

TY  - JOUR
AU  - Todorović, Zoran B.
AU  - Troter, Dragan Z.
AU  - Đokić Stojanović, Dušica R.
AU  - Veličković, Ana V.
AU  - Avramović, Jelena M.
AU  - Stamenković, Olivera S.
AU  - Veselinović, Ljiljana
AU  - Veljković, Vlada B.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0016236118317691
UR  - http://dais.sanu.ac.rs/123456789/4069
AB  - Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.
PB  - Elsevier
T2  - Fuel
T1  - Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent
SP  - 903
EP  - 910
VL  - 237
DO  - 10.1016/j.fuel.2018.10.056
ER  - 
@article{
author = "Todorović, Zoran B. and Troter, Dragan Z. and Đokić Stojanović, Dušica R. and Veličković, Ana V. and Avramović, Jelena M. and Stamenković, Olivera S. and Veselinović, Ljiljana and Veljković, Vlada B.",
year = "2019",
url = "http://www.sciencedirect.com/science/article/pii/S0016236118317691, http://dais.sanu.ac.rs/123456789/4069",
abstract = "Crude biodiesel was proven as a cosolvent in the methanolysis of sunflower oil catalyzed by calcined CaO. This reaction was modeled and optimized statistically in terms of reaction temperature (33.2–66.8 °C), methanol-to-oil molar ratio (3.5:1–8.5:1) and catalyst concentration (0.219–1.065 mol/L). The cosolvent loading was 10 wt% (based on oil weight). The optimum reaction conditions were found to be: the methanol-to-oil molar ratio of 7.1:1, the catalyst concentration of 0.74 mol/L and the reaction temperature 52 °C, ensuring the best esters content of 99.8%, for the reaction time of 1.5 h, which is close to the reported experimental value of 98.9%. Also, the used catalyst was recycled with no additional treatment in the further four consecutive cycles under the following reaction conditions: methanol-to-oil molar ratio 6:1, the concentration of catalyst 0.642 mol/L (only in the first run), the reaction temperature 50 °C, cosolvent-crude biodiesel loading 10 wt% to oil weight. The second recycling reaction provided the highest FAME content of 97.7% after 5 h.",
publisher = "Elsevier",
journal = "Fuel",
title = "Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent",
pages = "903-910",
volume = "237",
doi = "10.1016/j.fuel.2018.10.056"
}
15
12
14

Supplementary material for the article: Troter, D.Z., Todorović, Z.B., Đokić-Stojanović, D.R., Veselinović, L.M., Zdujić, M.V., Veljković, V.B., 2018. Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil. Journal of Molecular Liquids 266, 557–567. https://doi.org/10.1016/j.molliq.2018.06.106

Troter, Dragan Z.; Todorović, Zoran B.; Đokić Stojanović, Dušica R.; Veselinović, Ljiljana; Zdujić, Miodrag; Veljković, Vlada B.

(2018)

@misc{
author = "Troter, Dragan Z. and Todorović, Zoran B. and Đokić Stojanović, Dušica R. and Veselinović, Ljiljana and Zdujić, Miodrag and Veljković, Vlada B.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3772",
journal = "Journal of Molecular Liquids",
title = "Supplementary material for the article: Troter, D.Z., Todorović, Z.B., Đokić-Stojanović, D.R., Veselinović, L.M., Zdujić, M.V., Veljković, V.B., 2018. Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil. Journal of Molecular Liquids 266, 557–567. https://doi.org/10.1016/j.molliq.2018.06.106",
volume = "266"
}

Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil

Troter, Dragan Z.; Todorović, Zoran B.; Đokić Stojanović, Dušica R.; Veselinović, Ljiljana; Zdujić, Miodrag; Veljković, Vlada B.

(Elsevier, 2018)

TY  - JOUR
AU  - Troter, Dragan Z.
AU  - Todorović, Zoran B.
AU  - Đokić Stojanović, Dušica R.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Veljković, Vlada B.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3694
AB  - Choline chloride (ChCl)-based deep eutectic solvents (DESs) with different amides or polyols as hydrogen bond donors were tested as cosolvents in the ethanolysis of expired sunflower oil catalyzed by either calcined or non-calcined CaO. These cosolvents promoted the ethanolysis by a successful activation of non-calcined CaO, which was ascribed to the CaCO3 and Ca(OH)2 dissolution from the surface of the solid catalyst particles. With both calcined and non-calcined CaO, the polyol-based solvents gave higher fatty acid ethyl esters (FAEE) content than the amide-based solvents. Among the amide-based DESs, choline chloride:urea (ChCl:U) was the most efficient activator of non-calcined CaO. Choline chloride:ethylene glycol (ChCl:EG) and choline chloride:propylene glycol (ChCl:PG) were more efficient than choline chloride:glycerol (ChCl:G) even with non-calcined CaO. However, ChCl:G might be more suitable than the others since the use of glycerol, a by-product of the ethanolysis, could reduce the overall biodiesel production costs. FTIR and XRD analyses of the used and separated CaO were performed in order to get more insight into the catalytically active phase(s). Also, the mechanisms of the CaO activation in the presence of the DESs were considered. The phase separation of the reaction mixture was faster in the presence of the DESs. Since ChCl:U and ChCl:G DESs are nontoxic, biodegradable, biorenewable and “green” solvents and provide the elimination of the calcination step of CaO, thus reducing the overall process costs, the non-calcined CaO catalytic systems with these DESs are recommended for further optimization. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Journal of Molecular Liquids
T1  - Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil
SP  - 557
EP  - 567
VL  - 266
DO  - 10.1016/j.molliq.2018.06.106
ER  - 
@article{
author = "Troter, Dragan Z. and Todorović, Zoran B. and Đokić Stojanović, Dušica R. and Veselinović, Ljiljana and Zdujić, Miodrag and Veljković, Vlada B.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3694",
abstract = "Choline chloride (ChCl)-based deep eutectic solvents (DESs) with different amides or polyols as hydrogen bond donors were tested as cosolvents in the ethanolysis of expired sunflower oil catalyzed by either calcined or non-calcined CaO. These cosolvents promoted the ethanolysis by a successful activation of non-calcined CaO, which was ascribed to the CaCO3 and Ca(OH)2 dissolution from the surface of the solid catalyst particles. With both calcined and non-calcined CaO, the polyol-based solvents gave higher fatty acid ethyl esters (FAEE) content than the amide-based solvents. Among the amide-based DESs, choline chloride:urea (ChCl:U) was the most efficient activator of non-calcined CaO. Choline chloride:ethylene glycol (ChCl:EG) and choline chloride:propylene glycol (ChCl:PG) were more efficient than choline chloride:glycerol (ChCl:G) even with non-calcined CaO. However, ChCl:G might be more suitable than the others since the use of glycerol, a by-product of the ethanolysis, could reduce the overall biodiesel production costs. FTIR and XRD analyses of the used and separated CaO were performed in order to get more insight into the catalytically active phase(s). Also, the mechanisms of the CaO activation in the presence of the DESs were considered. The phase separation of the reaction mixture was faster in the presence of the DESs. Since ChCl:U and ChCl:G DESs are nontoxic, biodegradable, biorenewable and “green” solvents and provide the elimination of the calcination step of CaO, thus reducing the overall process costs, the non-calcined CaO catalytic systems with these DESs are recommended for further optimization. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Journal of Molecular Liquids",
title = "Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil",
pages = "557-567",
volume = "266",
doi = "10.1016/j.molliq.2018.06.106"
}
7
6
6

Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil

Troter, Dragan Z.; Todorović, Zoran B.; Stojanović, Đokić; Đokić Stojanović, Dušica R.; Veselinović, Ljiljana; Zdujić, Miodrag; Veljković, Vlada B.

(2018)

TY  - JOUR
AU  - Troter, Dragan Z.
AU  - Todorović, Zoran B.
AU  - Stojanović, Đokić
AU  - Đokić Stojanović, Dušica R.
AU  - Veselinović, Ljiljana
AU  - Zdujić, Miodrag
AU  - Veljković, Vlada B.
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3802
AB  - Choline chloride (ChCl)-based deep eutectic solvents (DESs) with different amides or polyols as hydrogen bond donors were tested as cosolvents in the ethanolysis of expired sunflower oil catalyzed by either calcined or non-calcined CaO. These cosolvents promoted the ethanolysis by a successful activation of non-calcined CaO, which was ascribed to the CaCO3 and Ca(OH)2 dissolution from the surface of the solid catalyst particles. With both calcined and non-calcined CaO, the polyol-based solvents gave higher fatty acid ethyl esters (FAEE) content than the amide-based solvents. Among the amide-based DESs, choline chloride:urea (ChCl:U) was the most efficient activator of non-calcined CaO. Choline chloride:ethylene glycol (ChCl:EG) and choline chloride:propylene glycol (ChCl:PG) were more efficient than choline chloride:glycerol (ChCl:G) even with non-calcined CaO. However, ChCl:G might be more suitable than the others since the use of glycerol, a by-product of the ethanolysis, could reduce the overall biodiesel production costs. FTIR and XRD analyses of the used and separated CaO were performed in order to get more insight into the catalytically active phase(s). Also, the mechanisms of the CaO activation in the presence of the DESs were considered. The phase separation of the reaction mixture was faster in the presence of the DESs. Since ChCl:U and ChCl:G DESs are nontoxic, biodegradable, biorenewable and “green” solvents and provide the elimination of the calcination step of CaO, thus reducing the overall process costs, the non-calcined CaO catalytic systems with these DESs are recommended for further optimization. © 2018 Elsevier B.V.
T2  - Journal of Molecular Liquids
T1  - Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil
SP  - 557
EP  - 567
VL  - 266
DO  - 10.1016/j.molliq.2018.06.106
ER  - 
@article{
author = "Troter, Dragan Z. and Todorović, Zoran B. and Stojanović, Đokić and Đokić Stojanović, Dušica R. and Veselinović, Ljiljana and Zdujić, Miodrag and Veljković, Vlada B.",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3802",
abstract = "Choline chloride (ChCl)-based deep eutectic solvents (DESs) with different amides or polyols as hydrogen bond donors were tested as cosolvents in the ethanolysis of expired sunflower oil catalyzed by either calcined or non-calcined CaO. These cosolvents promoted the ethanolysis by a successful activation of non-calcined CaO, which was ascribed to the CaCO3 and Ca(OH)2 dissolution from the surface of the solid catalyst particles. With both calcined and non-calcined CaO, the polyol-based solvents gave higher fatty acid ethyl esters (FAEE) content than the amide-based solvents. Among the amide-based DESs, choline chloride:urea (ChCl:U) was the most efficient activator of non-calcined CaO. Choline chloride:ethylene glycol (ChCl:EG) and choline chloride:propylene glycol (ChCl:PG) were more efficient than choline chloride:glycerol (ChCl:G) even with non-calcined CaO. However, ChCl:G might be more suitable than the others since the use of glycerol, a by-product of the ethanolysis, could reduce the overall biodiesel production costs. FTIR and XRD analyses of the used and separated CaO were performed in order to get more insight into the catalytically active phase(s). Also, the mechanisms of the CaO activation in the presence of the DESs were considered. The phase separation of the reaction mixture was faster in the presence of the DESs. Since ChCl:U and ChCl:G DESs are nontoxic, biodegradable, biorenewable and “green” solvents and provide the elimination of the calcination step of CaO, thus reducing the overall process costs, the non-calcined CaO catalytic systems with these DESs are recommended for further optimization. © 2018 Elsevier B.V.",
journal = "Journal of Molecular Liquids",
title = "Choline chloride-based deep eutectic solvents in CaO-catalyzed ethanolysis of expired sunflower oil",
pages = "557-567",
volume = "266",
doi = "10.1016/j.molliq.2018.06.106"
}
7
6
6