Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2019 (1)
2018 (5)
2017 (3)

Đukić Vuković, Aleksandra

Link to this page

Authority KeyName Variants
orcid::0000-0002-0750-2754
  • Đukić Vuković, Aleksandra (9)
Projects

Author's Bibliography

Surfactant-Assisted Microwave Processed ZnO Nanoparticles with Optimized Surface-to-Bulk Defect Ratio For Potential Biomedical Application

Stanković, Ana; Drvenica, Ivana; Đukić Vuković, Aleksandra; Marković, Smilja

(2019)

TY  - CONF
AU  - Stanković, Ana
AU  - Drvenica, Ivana
AU  - Đukić Vuković, Aleksandra
AU  - Marković, Smilja
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7009
AB  - Owing to a wide band gap energy (3.37 eV at RT) and a large exciton binding energy (60 meV), ZnO nanoparticles (ZnONP) have a diverse application, e.g. in electronics, optoelectronics, photocatalysis. Besides, ZnONP have a great potential in medicine for bioimaging, drug/gene delivery or as antimicrobial and anticancer agents. One of suggested governing mechanisms of the mentioned biological activities of ZnONP is based on formation of reactive oxygen species (ROS). When ZnONP absorb photon with energy equal or greater than its band gap, electrons are excited from the valence band (VB) to the conduction band (CB) leaving the holes in VB. Furthermore, the photogenerated holes (h+) and electrons (e-) migrate from bulk to surface. The photogenerated holes at the VB react with water molecules adsorbed at the particle surface to produce hydroxyl radical, while electrons in CB react with oxygen molecules generating anionic superoxide radical O2 -•. Superoxide radicals can be transformed in highly reactive OH• and so on [1]. Derivatives of this active oxygen can damage the bacterial/tumor cells [2]. However, in sufficiency ROS can damage normal cells as well. Thus, an understanding of ZnONP crystal structure-activity relationship and mechanism of ZnONP-related products formation and their consequent activity is crucial for the design of safe ZnONP based biomaterial for application in treating diseases like cancer. A series of ZnONP samples were synthesized by microwave processing of precipitate in the presence of a small amount (5 wt.%) of surfactants CTAB and citric acid. The particles crystallinity and purity were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. The particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM) and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. ZnONP samples with different surface-to-bulk defect ratio were examined on ROS formation and antimicrobial activity. Future studies will be conducted with an aim to correlate surface-to-bulk defect ratio in ZnONP with mechanism of ROS formation and their cytotoxicity to normal and cancerous cells.
C3  - Book of Abstracts / First CA17140 COST Conference Cancer Nanomedicine – from the Bench to the Bedside, October 15-17, 2019, Bellevue Park Hotel, Riga, Latvia
T1  - Surfactant-Assisted Microwave Processed ZnO Nanoparticles with Optimized Surface-to-Bulk Defect Ratio For Potential Biomedical Application
SP  - 93
EP  - 93
ER  - 
@conference{
author = "Stanković, Ana and Drvenica, Ivana and Đukić Vuković, Aleksandra and Marković, Smilja",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7009",
abstract = "Owing to a wide band gap energy (3.37 eV at RT) and a large exciton binding energy (60 meV), ZnO nanoparticles (ZnONP) have a diverse application, e.g. in electronics, optoelectronics, photocatalysis. Besides, ZnONP have a great potential in medicine for bioimaging, drug/gene delivery or as antimicrobial and anticancer agents. One of suggested governing mechanisms of the mentioned biological activities of ZnONP is based on formation of reactive oxygen species (ROS). When ZnONP absorb photon with energy equal or greater than its band gap, electrons are excited from the valence band (VB) to the conduction band (CB) leaving the holes in VB. Furthermore, the photogenerated holes (h+) and electrons (e-) migrate from bulk to surface. The photogenerated holes at the VB react with water molecules adsorbed at the particle surface to produce hydroxyl radical, while electrons in CB react with oxygen molecules generating anionic superoxide radical O2 -•. Superoxide radicals can be transformed in highly reactive OH• and so on [1]. Derivatives of this active oxygen can damage the bacterial/tumor cells [2]. However, in sufficiency ROS can damage normal cells as well. Thus, an understanding of ZnONP crystal structure-activity relationship and mechanism of ZnONP-related products formation and their consequent activity is crucial for the design of safe ZnONP based biomaterial for application in treating diseases like cancer. A series of ZnONP samples were synthesized by microwave processing of precipitate in the presence of a small amount (5 wt.%) of surfactants CTAB and citric acid. The particles crystallinity and purity were investigated by X-ray diffraction, Raman and ATR-FTIR spectroscopy. The particles morphology and texture properties were observed with field emission scanning electron microscopy (FE–SEM) and nitrogen adsorption–desorption isotherm, respectively. The optical properties were studied using UV–Vis diffuse reflectance and photoluminescence (PL) spectroscopy. ZnONP samples with different surface-to-bulk defect ratio were examined on ROS formation and antimicrobial activity. Future studies will be conducted with an aim to correlate surface-to-bulk defect ratio in ZnONP with mechanism of ROS formation and their cytotoxicity to normal and cancerous cells.",
journal = "Book of Abstracts / First CA17140 COST Conference Cancer Nanomedicine – from the Bench to the Bedside, October 15-17, 2019, Bellevue Park Hotel, Riga, Latvia",
title = "Surfactant-Assisted Microwave Processed ZnO Nanoparticles with Optimized Surface-to-Bulk Defect Ratio For Potential Biomedical Application",
pages = "93-93"
}
Stanković, A., Drvenica, I., Đukić Vuković, A.,& Marković, S. (2019). Surfactant-Assisted Microwave Processed ZnO Nanoparticles with Optimized Surface-to-Bulk Defect Ratio For Potential Biomedical Application.
Book of Abstracts / First CA17140 COST Conference Cancer Nanomedicine – from the Bench to the Bedside, October 15-17, 2019, Bellevue Park Hotel, Riga, Latvia, 93-93.
Stanković A, Drvenica I, Đukić Vuković A, Marković S. Surfactant-Assisted Microwave Processed ZnO Nanoparticles with Optimized Surface-to-Bulk Defect Ratio For Potential Biomedical Application. Book of Abstracts / First CA17140 COST Conference Cancer Nanomedicine – from the Bench to the Bedside, October 15-17, 2019, Bellevue Park Hotel, Riga, Latvia. 2019;:93-93
Stanković Ana, Drvenica Ivana, Đukić Vuković Aleksandra, Marković Smilja, "Surfactant-Assisted Microwave Processed ZnO Nanoparticles with Optimized Surface-to-Bulk Defect Ratio For Potential Biomedical Application" (2019):93-93

Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera

(2018)

TY  - BOOK
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/5978
T2  - Materials Science and Engineering C
T1  - Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081
ER  - 
@book{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/5978",
journal = "Materials Science and Engineering C",
title = "Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. (2018). Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081.
Materials Science and Engineering C.
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević O. Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081. Materials Science and Engineering C. 2018;
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Trišić Dijana, Lazarević Miloš, Mojović Ljiljana, Milošević Olivera, "Supplement information for the article: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Trisic, D., Lazarevic, M., Mojovic, L., Milosevic, O., 2018. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C 91, 597–605. https://doi.org/10.1016/j.msec.2018.05.081" (2018)

Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Marinković, Bojan A.; Mojović, Ljiljana; Milošević, Olivera

(2018)

TY  - BOOK
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Marinković, Bojan A.
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
UR  - http://www.rsc.org/suppdata/c8/ra/c8ra04178d/c8ra04178d1.pdf
UR  - http://dais.sanu.ac.rs/123456789/3785
AB  - Fig. S1. TEM (a) and HRTEM (b) images of amino modified NaYF4:Yb,Er UCNPs. Corresponding FFT/IFFT given as insets in b, confirms that
much smaller crystallites notable at the particles surfaces (a) revealed periodic array of cubic alpha phase, (111) plane with d value of 3.140 Å; Fig. S2. XPS spectrum of amino-functionalized NaYF4:Yb,Er UCNPs: survey spectrum and fine-scan spectra of Na 1s, Y 3d, Yb 4d, Er 4d, F 1s
and decomposed ones of C 1s, O 1s and N 1s; Fig. S3. Photostability of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles. The emission intensity was traced during 1h;
T2  - RSC Advances
T1  - Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D
VL  - 8
IS  - 48
ER  - 
@book{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Marinković, Bojan A. and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
url = "http://www.rsc.org/suppdata/c8/ra/c8ra04178d/c8ra04178d1.pdf, http://dais.sanu.ac.rs/123456789/3785",
abstract = "Fig. S1. TEM (a) and HRTEM (b) images of amino modified NaYF4:Yb,Er UCNPs. Corresponding FFT/IFFT given as insets in b, confirms that
much smaller crystallites notable at the particles surfaces (a) revealed periodic array of cubic alpha phase, (111) plane with d value of 3.140 Å; Fig. S2. XPS spectrum of amino-functionalized NaYF4:Yb,Er UCNPs: survey spectrum and fine-scan spectra of Na 1s, Y 3d, Yb 4d, Er 4d, F 1s
and decomposed ones of C 1s, O 1s and N 1s; Fig. S3. Photostability of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles. The emission intensity was traced during 1h;",
journal = "RSC Advances",
title = "Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D",
volume = "8",
number = "48"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Marinković, B. A., Mojović, L.,& Milošević, O. (2018). Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D.
RSC Advances, 8(48).
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Marinković BA, Mojović L, Milošević O. Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D. RSC Advances. 2018;8(48)
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Marinković Bojan A., Mojović Ljiljana, Milošević Olivera, "Supplementary file: Mancic, L., Djukic-Vukovic, A., Dinic, I., Nikolic, M.G., Rabasovic, M.D., Krmpot, A.J., Costa, A.M.L.M., Marinkovic, B.A., Mojovic, L., Milosevic, O., 2018. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for in vitro cell imaging. RSC Adv. 8, 27429–27437. https://doi.org/10.1039/C8RA04178D" 8, no. 48 (2018)

NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera

(Elsevier, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3693
AB  - Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells
SP  - 597
EP  - 605
VL  - 91
DO  - 10.1016/j.msec.2018.05.081
ER  - 
@article{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3693",
abstract = "Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells",
pages = "597-605",
volume = "91",
doi = "10.1016/j.msec.2018.05.081"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. (2018). NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells.
Materials Science and Engineering CElsevier., 91, 597-605.
https://doi.org/10.1016/j.msec.2018.05.081
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević O. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C. 2018;91:597-605
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Trišić Dijana, Lazarević Miloš, Mojović Ljiljana, Milošević Olivera, "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells" 91 (2018):597-605,
https://doi.org/10.1016/j.msec.2018.05.081 .
11
8
9

NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Trišić, Dijana; Lazarević, Miloš; Mojović, Ljiljana; Milošević, Olivera

(Elsevier, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Trišić, Dijana
AU  - Lazarević, Miloš
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4083
AB  - Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.
PB  - Elsevier
T2  - Materials Science and Engineering C
T1  - NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells
SP  - 597
EP  - 605
VL  - 91
DO  - 10.1016/j.msec.2018.05.081
ER  - 
@article{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Trišić, Dijana and Lazarević, Miloš and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4083",
abstract = "Lanthanide-doped fluoride up-converting nanoparticles (UCNPs) represent the new class of imaging contrast agents which hold great potential for overcoming existing problems associated with traditionally used dyes, proteins and quantum dots. In this study, a new kind of hybrid NaYF4:Yb,Er/PLGA nanoparticles for efficient biolabeling were prepared through one-pot solvothermal synthesis route. Morphological and structural characteristics of the as-designed particles were obtained using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM/TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy, while their cytotoxicity as well as up-conversion (UC) labeling capability were tested in vitro toward human gingival cells (HGC) and oral squamous cell carcinoma (OSCC). The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. PLGA [Poly(lactic-co-glycolic acid)] ligands attached at the surface of UCNPs particles provide their enhanced cellular uptake and enable high-quality cells imaging through a near-infrared (NIR) laser scanning microscopy (λex = 980 nm). Moreover, the fact that NaYF4:Yb,Er/PLGA UCNPs show low cytotoxicity against HGC over the whole concentration range (10–50 μg/mL) while a dose dependent viability of OSCC is obtained indicates that these might be a promising candidates for targeted cancer cell therapy. © 2018 Elsevier B.V.",
publisher = "Elsevier",
journal = "Materials Science and Engineering C",
title = "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells",
pages = "597-605",
volume = "91",
doi = "10.1016/j.msec.2018.05.081"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Trišić, D., Lazarević, M., Mojović, L.,& Milošević, O. (2018). NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells.
Materials Science and Engineering CElsevier., 91, 597-605.
https://doi.org/10.1016/j.msec.2018.05.081
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Trišić D, Lazarević M, Mojović L, Milošević O. NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells. Materials Science and Engineering C. 2018;91:597-605
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Trišić Dijana, Lazarević Miloš, Mojović Ljiljana, Milošević Olivera, "NIR photo-driven upconversion in NaYF4:Yb,Er/PLGA particles for in vitro bioimaging of cancer cells" 91 (2018):597-605,
https://doi.org/10.1016/j.msec.2018.05.081 .
11
8
9

One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging

Mančić, Lidija; Đukić Vuković, Aleksandra; Dinić, Ivana; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Costa, Antonio Mario Leal Martins; Marinković, Bojan A.; Mojović, Ljiljana; Milošević, Olivera

(London : Royal Society of Chemistry, 2018)

TY  - JOUR
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Dinić, Ivana
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Costa, Antonio Mario Leal Martins
AU  - Marinković, Bojan A.
AU  - Mojović, Ljiljana
AU  - Milošević, Olivera
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/3748
AB  - The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml-1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. © 2018 The Royal Society of Chemistry.
PB  - London : Royal Society of Chemistry
T2  - RSC Advances
T2  - RSC Advances
T1  - One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging
SP  - 27429
EP  - 27437
VL  - 8
IS  - 48
DO  - 10.1039/c8ra04178d
ER  - 
@article{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Dinić, Ivana and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Costa, Antonio Mario Leal Martins and Marinković, Bojan A. and Mojović, Ljiljana and Milošević, Olivera",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/3748",
abstract = "The emerging up-conversion nanoparticles (UCNPs) offer a wide range of biotechnology applications, from biomarkers and deep tissue imaging, to single molecule tracking and drug delivery. Their successful conjugation to biocompatible agents is crucial for specific molecules recognition and usually requires multiple steps which may lead to low reproducibility. Here, we report a simple and rapid one-step procedure for in situ synthesis of biocompatible amino-functionalized NaYF4:Yb,Er UCNPs that could be used for NIR-driven fluorescence cell labeling. X-ray diffraction showed that UCNPs synthesized through chitosan-assisted solvothermal processing are monophasic and crystallize in a cubic α phase. Scanning and transmission electron microscopy revealed that the obtained crystals are spherical in shape with a mean diameter of 120 nm. Photoluminescence spectra indicated weaker green (2H11/2, 4S3/2 → 4I15/2) and stronger red emission (4F9/2 → 4I15/2), as a result of enhanced non-radiative 4I11/2 → 4I13/2 Er3+ relaxation. The presence of chitosan groups at the surface of UCNPs was confirmed by Fourier transform infrared spectroscopy, thermogravimetry and X-ray photoelectron spectroscopy. This provides their enhanced internalization in cells, at low concentration of 10 μg ml-1, without suppression of cell viability after 24 h of exposure. Furthermore, upon 980 nm laser irradiation, the amino-functionalized NaYF4:Yb,Er UCNPs were successfully used in vitro for labeling of two human cell types, normal gingival and oral squamous cell carcinoma. © 2018 The Royal Society of Chemistry.",
publisher = "London : Royal Society of Chemistry",
journal = "RSC Advances, RSC Advances",
title = "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging",
pages = "27429-27437",
volume = "8",
number = "48",
doi = "10.1039/c8ra04178d"
}
Mančić, L., Đukić Vuković, A., Dinić, I., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Costa, A. M. L. M., Marinković, B. A., Mojović, L.,& Milošević, O. (2018). One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging.
RSC AdvancesLondon : Royal Society of Chemistry., 8(48), 27429-27437.
https://doi.org/10.1039/c8ra04178d
Mančić L, Đukić Vuković A, Dinić I, Nikolić MG, Rabasović MD, Krmpot A, Costa AMLM, Marinković BA, Mojović L, Milošević O. One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging. RSC Advances. 2018;8(48):27429-27437
Mančić Lidija, Đukić Vuković Aleksandra, Dinić Ivana, Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Costa Antonio Mario Leal Martins, Marinković Bojan A., Mojović Ljiljana, Milošević Olivera, "One-step synthesis of amino-functionalized up-converting NaYF4:Yb,Er nanoparticles for: In vitro cell imaging" 8, no. 48 (2018):27429-27437,
https://doi.org/10.1039/c8ra04178d .
5
4
4

Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging

Dinić, Ivana; Đukić Vuković, Aleksandra; Nikolić, Marko G.; Milošević, Olivera; Mančić, Lidija

(Belgrade : Institute of Technical Sciences of SASA, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Đukić Vuković, Aleksandra
AU  - Nikolić, Marko G.
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15448
AB  - Lanthanide doped up-converting nanoparticles (UCNPs) have significant role in biomedical field, especially in cell imaging and target drug delivery, due to their convenient luminescent properties. For that purpose UCNPs should have the specific morphological and luminescent characteristics. In this study the biocompatible NaYF4:Yb,Er@Chitosane particles were synthesized through one-step hydrothermal synthesis. Obtained particles were characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Structural refinement data show the presence of cubic (Fm-3m) phase in spherical shaped nanoparticles size up to 200 nm, while the FTIR analysis revealed the presence of chitosan on the particle surface which have no influence on the luminescence efficiency of the UCNPs. Cytotoxicity as well as cell labeling capability of synthesized UCNPs were tested in vitro on the human gingival fibroblasts (HGF) and head and neck squamous carcinoma cells (HNSCC). The results show excellent biocompatibility against HGF, and successful in- vitro visualization of HNSCC cell cultures upon 980 nm laser irradiation.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia
T1  - Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging
SP  - 2
EP  - 2
ER  - 
@conference{
author = "Dinić, Ivana and Đukić Vuković, Aleksandra and Nikolić, Marko G. and Milošević, Olivera and Mančić, Lidija",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15448",
abstract = "Lanthanide doped up-converting nanoparticles (UCNPs) have significant role in biomedical field, especially in cell imaging and target drug delivery, due to their convenient luminescent properties. For that purpose UCNPs should have the specific morphological and luminescent characteristics. In this study the biocompatible NaYF4:Yb,Er@Chitosane particles were synthesized through one-step hydrothermal synthesis. Obtained particles were characterized in detail using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Structural refinement data show the presence of cubic (Fm-3m) phase in spherical shaped nanoparticles size up to 200 nm, while the FTIR analysis revealed the presence of chitosan on the particle surface which have no influence on the luminescence efficiency of the UCNPs. Cytotoxicity as well as cell labeling capability of synthesized UCNPs were tested in vitro on the human gingival fibroblasts (HGF) and head and neck squamous carcinoma cells (HNSCC). The results show excellent biocompatibility against HGF, and successful in- vitro visualization of HNSCC cell cultures upon 980 nm laser irradiation.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia",
title = "Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging",
pages = "2-2"
}
Dinić, I., Đukić Vuković, A., Nikolić, M. G., Milošević, O.,& Mančić, L. (2017). Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging.
Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, SerbiaBelgrade : Institute of Technical Sciences of SASA., 2-2.
Dinić I, Đukić Vuković A, Nikolić MG, Milošević O, Mančić L. Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging. Program and the Book of Abstracts / Sixteenth Young Researchers' Conference Materials Sciences and Engineering, December 6-8, 2017, Belgrade, Serbia. 2017;:2-2
Dinić Ivana, Đukić Vuković Aleksandra, Nikolić Marko G., Milošević Olivera, Mančić Lidija, "Photo-driven upconversion in NaYF4:Yb,Er@chitosane particles for cancer cells bioimaging" (2017):2-2

One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application

Dinić, Ivana; Đukić Vuković, Aleksandra; Mojović, L.; Nikolić, Marko G.; Rabasović, Mihailo D.; Krmpot, Aleksandar; Milošević, Olivera; Mančić, Lidija

(Belgrade : Institute of Physics Belgrade, 2017)

TY  - CONF
AU  - Dinić, Ivana
AU  - Đukić Vuković, Aleksandra
AU  - Mojović, L.
AU  - Nikolić, Marko G.
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Milošević, Olivera
AU  - Mančić, Lidija
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15423
AB  - There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles with specific morphological characteristics and efficient luminescence response suitable for biomedical use [1]. A conventional approach for generation of such particles comprises decomposition of organometallic compoundsin an oxygen-free environment and additional ligand exchange [2,3]. The biocompatible and water soluble NaYF4:Yb,Er@Chitosane particles used in this study were synthesized through facile one-pot hydrothermal synthesis and were characterized using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Due to the presence of the amino groups at their surface these particles exhibit excellent hydrophilic properties and low cytotoxicity against human gingival fibroblasts (HGF), which was proven by MTT assay. Furthermore, upon 980 nm laser irradiation the as-prepared particles were successfully used for in-vitro visualization of the primary cell cultures of head and neck squamous carcinoma cells (HNSCC). In a NaYF4:Yb,Er phase upconversion is enabled by the sequential absorption of two or more near-infrared photons by Yb3+ and subsequent energy transfer to the long-lived metastable electron states of Er3+ which produces luminescence emission at visible spectra after relaxation.
PB  - Belgrade : Institute of Physics Belgrade
C3  - Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia
T1  - One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application
SP  - 81
EP  - 81
ER  - 
@conference{
author = "Dinić, Ivana and Đukić Vuković, Aleksandra and Mojović, L. and Nikolić, Marko G. and Rabasović, Mihailo D. and Krmpot, Aleksandar and Milošević, Olivera and Mančić, Lidija",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15423",
abstract = "There is a great technological interest in synthesis of lanthanide doped upconverting nanoparticles with specific morphological characteristics and efficient luminescence response suitable for biomedical use [1]. A conventional approach for generation of such particles comprises decomposition of organometallic compoundsin an oxygen-free environment and additional ligand exchange [2,3]. The biocompatible and water soluble NaYF4:Yb,Er@Chitosane particles used in this study were synthesized through facile one-pot hydrothermal synthesis and were characterized using X-ray powder diffraction (XRPD), Fourier-transform infrared (FTIR) spectroscopy, field emission scanning and transmission electron microscopy (FESEM and TEM) and photoluminesce measurement (PL). Due to the presence of the amino groups at their surface these particles exhibit excellent hydrophilic properties and low cytotoxicity against human gingival fibroblasts (HGF), which was proven by MTT assay. Furthermore, upon 980 nm laser irradiation the as-prepared particles were successfully used for in-vitro visualization of the primary cell cultures of head and neck squamous carcinoma cells (HNSCC). In a NaYF4:Yb,Er phase upconversion is enabled by the sequential absorption of two or more near-infrared photons by Yb3+ and subsequent energy transfer to the long-lived metastable electron states of Er3+ which produces luminescence emission at visible spectra after relaxation.",
publisher = "Belgrade : Institute of Physics Belgrade",
journal = "Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia",
title = "One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application",
pages = "81-81"
}
Dinić, I., Đukić Vuković, A., Mojović, L., Nikolić, M. G., Rabasović, M. D., Krmpot, A., Milošević, O.,& Mančić, L. (2017). One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application.
Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade SerbiaBelgrade : Institute of Physics Belgrade., 81-81.
Dinić I, Đukić Vuković A, Mojović L, Nikolić MG, Rabasović MD, Krmpot A, Milošević O, Mančić L. One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application. Abstracts of Tutorial, Keynote, Invited Lectures, Progress Reports and Contributed Papers of the Sixth International School and Conference on Photonics PHOTONICA2017, 28 August – 1 September 2017, Belgrade Serbia. 2017;:81-81
Dinić Ivana, Đukić Vuković Aleksandra, Mojović L., Nikolić Marko G., Rabasović Mihailo D., Krmpot Aleksandar, Milošević Olivera, Mančić Lidija, "One-step synthesis of NIR-responsive NaYF4:Yb,Er@Chitosane nanoparticles for biomedical application" (2017):81-81

In-vitro visualization of primary tumor cells using up-conversion nanophosphors

Mančić, Lidija; Đukić Vuković, Aleksandra; Mojović, Ljiljana; Rabasović, Mihailo D.; Krmpot, Aleksandar; Dinić, Ivana; Costa, Antonio Mario Leal Martins; Milošević, Olivera

(Belgrade : Serbian Ceramic Society, 2017)

TY  - CONF
AU  - Mančić, Lidija
AU  - Đukić Vuković, Aleksandra
AU  - Mojović, Ljiljana
AU  - Rabasović, Mihailo D.
AU  - Krmpot, Aleksandar
AU  - Dinić, Ivana
AU  - Costa, Antonio Mario Leal Martins
AU  - Milošević, Olivera
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/4772
AB  - For such purpose, Ln-UCNPs should have specific morphological characteristics and efficient luminescence response. In this work, a biocompatible and water dispersible NaYF4:Yb,Er@PLGA nanoparticles synthesized using a one-step hydrothermal synthesis were tested as fluorescent bio-labels of primary cell cultures obtained after passage of head and neck squamous carcinoma cells (HNSCC). Structural, morphological and optical properties of particles were obtained using X-ray powder diffraction (XRPD), field emission scanning and transmission electron microscopy (FESEM/TEM), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy. The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. Moreover, preservation of the PLGA ligands at the particles surface facilitates their interactions with the cell membrane and provides permeation into cells. To asses a biological safety of their use, viability of human gingival fibroblasts (HFG) was additionally evaluated by a colorimetric MTT assay.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - In-vitro visualization of primary tumor cells using up-conversion nanophosphors
SP  - 59
EP  - 59
ER  - 
@conference{
author = "Mančić, Lidija and Đukić Vuković, Aleksandra and Mojović, Ljiljana and Rabasović, Mihailo D. and Krmpot, Aleksandar and Dinić, Ivana and Costa, Antonio Mario Leal Martins and Milošević, Olivera",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/4772",
abstract = "For such purpose, Ln-UCNPs should have specific morphological characteristics and efficient luminescence response. In this work, a biocompatible and water dispersible NaYF4:Yb,Er@PLGA nanoparticles synthesized using a one-step hydrothermal synthesis were tested as fluorescent bio-labels of primary cell cultures obtained after passage of head and neck squamous carcinoma cells (HNSCC). Structural, morphological and optical properties of particles were obtained using X-ray powder diffraction (XRPD), field emission scanning and transmission electron microscopy (FESEM/TEM), energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) and photoluminescence (PL) spectroscopy. The results revealed coexistence of the cubic (Fm-3m) and hexagonal (P63/m) phase in spherical and irregularly shaped nanoparticles, respectively. Moreover, preservation of the PLGA ligands at the particles surface facilitates their interactions with the cell membrane and provides permeation into cells. To asses a biological safety of their use, viability of human gingival fibroblasts (HFG) was additionally evaluated by a colorimetric MTT assay.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "In-vitro visualization of primary tumor cells using up-conversion nanophosphors",
pages = "59-59"
}
Mančić, L., Đukić Vuković, A., Mojović, L., Rabasović, M. D., Krmpot, A., Dinić, I., Costa, A. M. L. M.,& Milošević, O. (2017). In-vitro visualization of primary tumor cells using up-conversion nanophosphors.
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017Belgrade : Serbian Ceramic Society., 59-59.
Mančić L, Đukić Vuković A, Mojović L, Rabasović MD, Krmpot A, Dinić I, Costa AMLM, Milošević O. In-vitro visualization of primary tumor cells using up-conversion nanophosphors. Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:59-59
Mančić Lidija, Đukić Vuković Aleksandra, Mojović Ljiljana, Rabasović Mihailo D., Krmpot Aleksandar, Dinić Ivana, Costa Antonio Mario Leal Martins, Milošević Olivera, "In-vitro visualization of primary tumor cells using up-conversion nanophosphors" (2017):59-59