Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2019 (1)
2018 (2)
2017 (2)
2016 (1)
2015 (1)
2014 (3)
2013 (1)
Version

Flores-Carrasco, Gregorio

Link to this page

Authority KeyName Variants
orcid::0000-0002-0204-0589
  • Flores-Carrasco, Gregorio (11)

Author's Bibliography

Synthesis of Ce/Ru Doped ZnO photocatalysts to the degradation of emerging pollutants in wastewater

Flores-Carrasco, Gregorio; Rodriguez-Pena, M.; Milošević, Olivera; Urbieta, A.; Fernandez, P.; Rabanal, Maria Eugenia

(Belgrade : Materials Research Society of Serbia, 2019)

TY  - CONF
AU  - Flores-Carrasco, Gregorio
AU  - Rodriguez-Pena, M.
AU  - Milošević, Olivera
AU  - Urbieta, A.
AU  - Fernandez, P.
AU  - Rabanal, Maria Eugenia
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6684
AB  - Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system with different dopant content have been synthesized by Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. The average crystallite size, morphology, specific surface area, and direct band gap have been evaluated. The structural and functional characteristics have been studied by X-Ray Diffraction techniques (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis Diffuse Reflectance Spectra (DRS), UV-Vis Spectroscopy, and Photoluminescence measurements (PL). Also, the photocatalytic activities of pure and doped ZnONPs were evaluated by removal rate of Methylene Blue (MB) under UV irradiation (365 nm) at room temperature. XRD patterns revealed the common hexagonal ZnO Wurtzite-type structures with a preferred orientation of (101) plane. Secondary phases as CeO2, Ce2O3, Ce, RuO2, Ru3O4, Ruhave been identified. For both dopant, Ceand Ru, and for all the concentrations in the precursor solution, FESEM and HRTEM showed NPswith morphologies ranging from spherical/ellipsoidal to hexagonal. The size of NPs was observed to decrease (from ~30 to ~16 nm) with increasing doping concentration due to the interaction between the Ce-O-Zn or Ru-O-Zn ions. EDS results confirmed the incorporation of Ce or Ru ions into ZnO lattice.Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band gap energy has been estimated to be slightly lower than 3.0 eV in both, the Ce and Ru-doped samples. Compared with pure ZnO NPs, the PL spectra of the doped NPs showed red-shifted UV emission and an enhanced blue emission with the typical broad green-yellow emission. The results showed that photocatalytic efficiency of doped ZnO NPs was always enhanced.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019
T1  - Synthesis of Ce/Ru Doped ZnO photocatalysts to the degradation of emerging pollutants in wastewater
SP  - 28
EP  - 29
ER  - 
@conference{
author = "Flores-Carrasco, Gregorio and Rodriguez-Pena, M. and Milošević, Olivera and Urbieta, A. and Fernandez, P. and Rabanal, Maria Eugenia",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6684",
abstract = "Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system with different dopant content have been synthesized by Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. The average crystallite size, morphology, specific surface area, and direct band gap have been evaluated. The structural and functional characteristics have been studied by X-Ray Diffraction techniques (XRD), Field Emission Scanning Electron Microscope (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis Diffuse Reflectance Spectra (DRS), UV-Vis Spectroscopy, and Photoluminescence measurements (PL). Also, the photocatalytic activities of pure and doped ZnONPs were evaluated by removal rate of Methylene Blue (MB) under UV irradiation (365 nm) at room temperature. XRD patterns revealed the common hexagonal ZnO Wurtzite-type structures with a preferred orientation of (101) plane. Secondary phases as CeO2, Ce2O3, Ce, RuO2, Ru3O4, Ruhave been identified. For both dopant, Ceand Ru, and for all the concentrations in the precursor solution, FESEM and HRTEM showed NPswith morphologies ranging from spherical/ellipsoidal to hexagonal. The size of NPs was observed to decrease (from ~30 to ~16 nm) with increasing doping concentration due to the interaction between the Ce-O-Zn or Ru-O-Zn ions. EDS results confirmed the incorporation of Ce or Ru ions into ZnO lattice.Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band gap energy has been estimated to be slightly lower than 3.0 eV in both, the Ce and Ru-doped samples. Compared with pure ZnO NPs, the PL spectra of the doped NPs showed red-shifted UV emission and an enhanced blue emission with the typical broad green-yellow emission. The results showed that photocatalytic efficiency of doped ZnO NPs was always enhanced.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019",
title = "Synthesis of Ce/Ru Doped ZnO photocatalysts to the degradation of emerging pollutants in wastewater",
pages = "28-29"
}
Flores-Carrasco, G., Rodriguez-Pena, M., Milošević, O., Urbieta, A., Fernandez, P.,& Rabanal, M. E. (2019). Synthesis of Ce/Ru Doped ZnO photocatalysts to the degradation of emerging pollutants in wastewater.
Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019Belgrade : Materials Research Society of Serbia., 28-29.
Flores-Carrasco G, Rodriguez-Pena M, Milošević O, Urbieta A, Fernandez P, Rabanal ME. Synthesis of Ce/Ru Doped ZnO photocatalysts to the degradation of emerging pollutants in wastewater. Program and the Book of abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VIII : New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, 23-25. September 2019. 2019;:28-29
Flores-Carrasco Gregorio, Rodriguez-Pena M., Milošević Olivera, Urbieta A., Fernandez P., Rabanal Maria Eugenia, "Synthesis of Ce/Ru Doped ZnO photocatalysts to the degradation of emerging pollutants in wastewater" (2019):28-29

Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties

Flores-Carrasco, Gregorio; Urbieta, A.; Fernandez, P.; Milošević, Olivera; Rabanal, Maria Eugenia

(ICCCI, 2018)

TY  - CONF
AU  - Flores-Carrasco, Gregorio
AU  - Urbieta, A.
AU  - Fernandez, P.
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4677
AB  - Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system have been synthesised at low temperature (190 °C) by a novel Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. Ce/Ru doped ZnO NPs with different molar content (1-3--5-10%) have been synthesised by both experimental processes. The crystallite size, morphology, specific surface area and band gap have been evaluated. Also, the structural and functional characteristics were carried out by X-ray diffraction technique (XRD), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis diffuse reflectance spectra (DRS), UV-Vis spectroscopy and photoluminescence measurements (PL). Also, the photocatalytic activities of ZnO nanoparticles were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at RT. XRD patterns revealed a hexagonal ZnO wurtzite-type crystalline structure with a preferred orientation of(101) plane. Any secondary phases have been identified such as Ce02, Ce203, ee, Ru02, Ru304, Ru. HRTEM showed NPs in shape from spherical/ellipsoidal to hexagonal, that does not change significantly with the increasing of precursor solution concentration and kind of dopant element in the samples obtained from PMTprocess. The size of NPs was observed in the range from 16 to 23 run. Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band energy has been estimated at <3.0 eV in the Ru-doped samples. The PL spectra mainly consist of four emission bands: (i) a strong UV emission band, (ii) a weak blue band, (iii) a blue-green band and (iv) a green-yellow band, respectively. The reported results showed the photocatalytic efficiency of doped ZnO nanoparticles was always enhanced.
PB  - ICCCI
C3  - ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts
T1  - Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties
SP  - 119
EP  - 119
ER  - 
@conference{
author = "Flores-Carrasco, Gregorio and Urbieta, A. and Fernandez, P. and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4677",
abstract = "Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system have been synthesised at low temperature (190 °C) by a novel Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. Ce/Ru doped ZnO NPs with different molar content (1-3--5-10%) have been synthesised by both experimental processes. The crystallite size, morphology, specific surface area and band gap have been evaluated. Also, the structural and functional characteristics were carried out by X-ray diffraction technique (XRD), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis diffuse reflectance spectra (DRS), UV-Vis spectroscopy and photoluminescence measurements (PL). Also, the photocatalytic activities of ZnO nanoparticles were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at RT. XRD patterns revealed a hexagonal ZnO wurtzite-type crystalline structure with a preferred orientation of(101) plane. Any secondary phases have been identified such as Ce02, Ce203, ee, Ru02, Ru304, Ru. HRTEM showed NPs in shape from spherical/ellipsoidal to hexagonal, that does not change significantly with the increasing of precursor solution concentration and kind of dopant element in the samples obtained from PMTprocess. The size of NPs was observed in the range from 16 to 23 run. Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band energy has been estimated at <3.0 eV in the Ru-doped samples. The PL spectra mainly consist of four emission bands: (i) a strong UV emission band, (ii) a weak blue band, (iii) a blue-green band and (iv) a green-yellow band, respectively. The reported results showed the photocatalytic efficiency of doped ZnO nanoparticles was always enhanced.",
publisher = "ICCCI",
journal = "ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts",
title = "Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties",
pages = "119-119"
}
Flores-Carrasco, G., Urbieta, A., Fernandez, P., Milošević, O.,& Rabanal, M. E. (2018). Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties.
ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and AbstractsICCCI., 119-119.
Flores-Carrasco G, Urbieta A, Fernandez P, Milošević O, Rabanal ME. Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties. ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts. 2018;:119-119
Flores-Carrasco Gregorio, Urbieta A., Fernandez P., Milošević Olivera, Rabanal Maria Eugenia, "Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties" (2018):119-119

Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn)

Gonzalez, L.; Muñoz-Fernandez, Lidia; Flores-Carrasco, Gregorio; Milošević, Olivera; Salas, G.; Rabanal, Maria Eugenia

(ICCCI, 2018)

TY  - CONF
AU  - Gonzalez, L.
AU  - Muñoz-Fernandez, Lidia
AU  - Flores-Carrasco, Gregorio
AU  - Milošević, Olivera
AU  - Salas, G.
AU  - Rabanal, Maria Eugenia
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4678
AB  - The synthesis of y-Fe203&ZnO hybrid nanocomposites has been carried out by a solvothermal process at low temperature evaluating the influence of different experimental parameters and conditions. Several techniques such as X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (HR-TEM), Vibrating Sample Magnetometry (VSM), Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), Dynamic Light Dispersion (DLS), Thermogravimetric Analysis (TGA) and UV-Vis Spectroscopy have been used to characterize the size, shape, structure, chemical composition, purity, crystalline phase and spectroscopic, magnetic, and finally the photocatalytic properties of nanocomposites prepared. Based on the results obtained, under irradiation ofUV-Vis light, the nanocomposites of y-Fe203-ZnO synthesised both at 6 hand 12 hat 120°C demonstrate a high photocatalytic activity (PCA) compared to pure y-Fe203 and ZnO samples for the degradation of methylene blue (MB), used as a cationic dye model. The percentage of degradation obtained for both cases was much higher than that obtained for the pure compounds of y-Fe203 and ZnO (85% and 81% vs 51% and 46%, respectively). Also, the study of stability, magnetic recovery and recyclability in MB dye degradation was carried out. For this purpose, photocatalytic tests were performed by reusing these hybrid nanocomposites during successive cycles. It has been verified that the PCA of these nanocomposites is maintained after several cicles of experiments with new MB solutions demonstrating their high photocatalytic stability. In conclusion, y-Fe203-ZnO hybrid nanostructures are a suitable candidate for its use in environmental applications, and to solve problems of removal of organic contaminants in the wastewater treatments as a magnetically recoverable photocatalyst.
PB  - ICCCI
C3  - ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts
T1  - Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn)
SP  - 123
EP  - 123
ER  - 
@conference{
author = "Gonzalez, L. and Muñoz-Fernandez, Lidia and Flores-Carrasco, Gregorio and Milošević, Olivera and Salas, G. and Rabanal, Maria Eugenia",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4678",
abstract = "The synthesis of y-Fe203&ZnO hybrid nanocomposites has been carried out by a solvothermal process at low temperature evaluating the influence of different experimental parameters and conditions. Several techniques such as X-Ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (HR-TEM), Vibrating Sample Magnetometry (VSM), Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), Dynamic Light Dispersion (DLS), Thermogravimetric Analysis (TGA) and UV-Vis Spectroscopy have been used to characterize the size, shape, structure, chemical composition, purity, crystalline phase and spectroscopic, magnetic, and finally the photocatalytic properties of nanocomposites prepared. Based on the results obtained, under irradiation ofUV-Vis light, the nanocomposites of y-Fe203-ZnO synthesised both at 6 hand 12 hat 120°C demonstrate a high photocatalytic activity (PCA) compared to pure y-Fe203 and ZnO samples for the degradation of methylene blue (MB), used as a cationic dye model. The percentage of degradation obtained for both cases was much higher than that obtained for the pure compounds of y-Fe203 and ZnO (85% and 81% vs 51% and 46%, respectively). Also, the study of stability, magnetic recovery and recyclability in MB dye degradation was carried out. For this purpose, photocatalytic tests were performed by reusing these hybrid nanocomposites during successive cycles. It has been verified that the PCA of these nanocomposites is maintained after several cicles of experiments with new MB solutions demonstrating their high photocatalytic stability. In conclusion, y-Fe203-ZnO hybrid nanostructures are a suitable candidate for its use in environmental applications, and to solve problems of removal of organic contaminants in the wastewater treatments as a magnetically recoverable photocatalyst.",
publisher = "ICCCI",
journal = "ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts",
title = "Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn)",
pages = "123-123"
}
Gonzalez, L., Muñoz-Fernandez, L., Flores-Carrasco, G., Milošević, O., Salas, G.,& Rabanal, M. E. (2018). Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn).
ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and AbstractsICCCI., 123-123.
Gonzalez L, Muñoz-Fernandez L, Flores-Carrasco G, Milošević O, Salas G, Rabanal ME. Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn). ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts. 2018;:123-123
Gonzalez L., Muñoz-Fernandez Lidia, Flores-Carrasco Gregorio, Milošević Olivera, Salas G., Rabanal Maria Eugenia, "Magnetically recoverable photocatalysts based on metal oxide nanostructures (Fe and Zn)" (2018):123-123

Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications

Muñoz-Fernandez, Lidia; Sierra-Fernández, Aránzazu; Flores-Carrasco, Gregorio; Milošević, Olivera; Rabanal, Maria Eugenia

(Elsevier, 2017)

TY  - JOUR
AU  - Muñoz-Fernandez, Lidia
AU  - Sierra-Fernández, Aránzazu
AU  - Flores-Carrasco, Gregorio
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/2378
AB  - Micro/nanostructured systems based on metallic oxide (ZnO) with noble metal (Ag) on the surface (Ag/ZnO) are synthesized by solvothermal method from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), zinc acetylacetonate hydrate (Zn(C5H7O2)2·xH2O) and silver nitrate (Ag(NO3)) as precursors. In these systems, polyvinylpyrrolidone (PVP) is used as surfactant for controlling particle morphology, size and dispersion. The obtained materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV–vis diffuse reflectance spectroscopy (DRS), N2 gas adsorption–desorption (BET) and Raman spectroscopy (RS). By XRD results, all major peaks are indexed to the hexagonal wurtzite-type structure of the ZnO and samples with noble metal, extra diffraction peaks are detected which correspond to the face-centered-cubic (fcc) structure of the metallic Ag. Depending on used precursor, different morphologies have been obtained. Mainly, ZnO prims-like rods – NRs (with 0.8 ⩽ aspect ratio ⩾ 3.4) – have been observed. Quasi-spherical particles of metallic Ag (with diameters between 558 ± 111 μm and 22 ± 1 nm) have been detected on the ZnO surface. Photocatalytic results (all samples studied >30% MB degradation) verify the important effect of surfactant and the viability of synthesized Ag/ZnO micro/nanocomposites for environmental applications.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications
SP  - 83
EP  - 92
VL  - 28
IS  - 1
DO  - 10.1016/j.apt.2016.09.033
ER  - 
@article{
author = "Muñoz-Fernandez, Lidia and Sierra-Fernández, Aránzazu and Flores-Carrasco, Gregorio and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/2378",
abstract = "Micro/nanostructured systems based on metallic oxide (ZnO) with noble metal (Ag) on the surface (Ag/ZnO) are synthesized by solvothermal method from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), zinc acetylacetonate hydrate (Zn(C5H7O2)2·xH2O) and silver nitrate (Ag(NO3)) as precursors. In these systems, polyvinylpyrrolidone (PVP) is used as surfactant for controlling particle morphology, size and dispersion. The obtained materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV–vis diffuse reflectance spectroscopy (DRS), N2 gas adsorption–desorption (BET) and Raman spectroscopy (RS). By XRD results, all major peaks are indexed to the hexagonal wurtzite-type structure of the ZnO and samples with noble metal, extra diffraction peaks are detected which correspond to the face-centered-cubic (fcc) structure of the metallic Ag. Depending on used precursor, different morphologies have been obtained. Mainly, ZnO prims-like rods – NRs (with 0.8 ⩽ aspect ratio ⩾ 3.4) – have been observed. Quasi-spherical particles of metallic Ag (with diameters between 558 ± 111 μm and 22 ± 1 nm) have been detected on the ZnO surface. Photocatalytic results (all samples studied >30% MB degradation) verify the important effect of surfactant and the viability of synthesized Ag/ZnO micro/nanocomposites for environmental applications.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications",
pages = "83-92",
volume = "28",
number = "1",
doi = "10.1016/j.apt.2016.09.033"
}
Muñoz-Fernandez, L., Sierra-Fernández, A., Flores-Carrasco, G., Milošević, O.,& Rabanal, M. E. (2017). Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications.
Advanced Powder TechnologyElsevier., 28(1), 83-92.
https://doi.org/10.1016/j.apt.2016.09.033
Muñoz-Fernandez L, Sierra-Fernández A, Flores-Carrasco G, Milošević O, Rabanal ME. Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications. Advanced Powder Technology. 2017;28(1):83-92
Muñoz-Fernandez Lidia, Sierra-Fernández Aránzazu, Flores-Carrasco Gregorio, Milošević Olivera, Rabanal Maria Eugenia, "Solvothermal synthesis of Ag/ZnO micro/nanostructures with different precursors for advanced photocatalytic applications" 28, no. 1 (2017):83-92,
https://doi.org/10.1016/j.apt.2016.09.033 .
2
17
11
18

Structural and functional properties of ZnO thin films grown on Si substrates by air assisted USP method from non-aqueous solutions at low-temperature

Flores-Carrasco, Gregorio; Muñoz-Fernandez, Lidia; Alcántara-Iniesta, Salvador; Soto-Cruz, Blanca Susana; Milošević, Olivera; Rabanal, Maria Eugenia

(2017)

TY  - JOUR
AU  - Flores-Carrasco, Gregorio
AU  - Muñoz-Fernandez, Lidia
AU  - Alcántara-Iniesta, Salvador
AU  - Soto-Cruz, Blanca Susana
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/15458
AB  - In this work, we deals with the processing and characterization of transparent conducting ZnO thin films on p-type Silicon substrates (1 0 0) by air assisted Ultrasonic Spray Pyrolysis (USP) method. The thin films from different Zn acetate precursor solution concentrations (0.1, 0.2, 0.3 and 0.4 M) were deposited at several temperatures (400, 450 and 500 °C) with thickness from ∼100 to ∼500 nm. The effects of precursor solution concentration, deposition time and temperature on the structural, morphological, optical, and electrical properties of ZnO films were studied by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–Vis-NIR spectroscopy, and Hall Effect techniques, respectively. It has been shown that on the ZnO film surface, the preferred orientation, the average crystallite size, the electrical resistivity and the RMS surface roughness depend on the substrate temperature. The grown films have showed a good adhesion and an excellent optical transmission of about 80–95% within the visible range (400–800 nm) and a direct band gap from 3.35 to 3.23 eV with the increase of the substrate temperature and the deposition time. All the PL spectra have exhibited a typical green-yellow emission band. Additionally photovoltaic (PV) activities of n-ZnO/p-Si heterostructures fabricated are investigated.
T2  - Advanced Powder Technology
T1  - Structural and functional properties of ZnO thin films grown on Si substrates by air assisted USP method from non-aqueous solutions at low-temperature
SP  - 93
EP  - 100
VL  - 28
IS  - 1
DO  - 10.1016/j.apt.2016.11.016
ER  - 
@article{
author = "Flores-Carrasco, Gregorio and Muñoz-Fernandez, Lidia and Alcántara-Iniesta, Salvador and Soto-Cruz, Blanca Susana and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/15458",
abstract = "In this work, we deals with the processing and characterization of transparent conducting ZnO thin films on p-type Silicon substrates (1 0 0) by air assisted Ultrasonic Spray Pyrolysis (USP) method. The thin films from different Zn acetate precursor solution concentrations (0.1, 0.2, 0.3 and 0.4 M) were deposited at several temperatures (400, 450 and 500 °C) with thickness from ∼100 to ∼500 nm. The effects of precursor solution concentration, deposition time and temperature on the structural, morphological, optical, and electrical properties of ZnO films were studied by X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), UV–Vis-NIR spectroscopy, and Hall Effect techniques, respectively. It has been shown that on the ZnO film surface, the preferred orientation, the average crystallite size, the electrical resistivity and the RMS surface roughness depend on the substrate temperature. The grown films have showed a good adhesion and an excellent optical transmission of about 80–95% within the visible range (400–800 nm) and a direct band gap from 3.35 to 3.23 eV with the increase of the substrate temperature and the deposition time. All the PL spectra have exhibited a typical green-yellow emission band. Additionally photovoltaic (PV) activities of n-ZnO/p-Si heterostructures fabricated are investigated.",
journal = "Advanced Powder Technology",
title = "Structural and functional properties of ZnO thin films grown on Si substrates by air assisted USP method from non-aqueous solutions at low-temperature",
pages = "93-100",
volume = "28",
number = "1",
doi = "10.1016/j.apt.2016.11.016"
}
Flores-Carrasco, G., Muñoz-Fernandez, L., Alcántara-Iniesta, S., Soto-Cruz, B. S., Milošević, O.,& Rabanal, M. E. (2017). Structural and functional properties of ZnO thin films grown on Si substrates by air assisted USP method from non-aqueous solutions at low-temperature.
Advanced Powder Technology, 28(1), 93-100.
https://doi.org/10.1016/j.apt.2016.11.016
Flores-Carrasco G, Muñoz-Fernandez L, Alcántara-Iniesta S, Soto-Cruz BS, Milošević O, Rabanal ME. Structural and functional properties of ZnO thin films grown on Si substrates by air assisted USP method from non-aqueous solutions at low-temperature. Advanced Powder Technology. 2017;28(1):93-100
Flores-Carrasco Gregorio, Muñoz-Fernandez Lidia, Alcántara-Iniesta Salvador, Soto-Cruz Blanca Susana, Milošević Olivera, Rabanal Maria Eugenia, "Structural and functional properties of ZnO thin films grown on Si substrates by air assisted USP method from non-aqueous solutions at low-temperature" 28, no. 1 (2017):93-100,
https://doi.org/10.1016/j.apt.2016.11.016 .
5
5
5

Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method

Flores-Carrasco, Gregorio; Carrillo-Lopez, J.; Martinez-Martinez, R.; Espinosa-Torres, N. D.; Muñoz, Lidia; Milošević, Olivera; Rabanal, Maria Eugenia

(Springer Berlin Heidelberg, 2016)

TY  - JOUR
AU  - Flores-Carrasco, Gregorio
AU  - Carrillo-Lopez, J.
AU  - Martinez-Martinez, R.
AU  - Espinosa-Torres, N. D.
AU  - Muñoz, Lidia
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2016
UR  - http://dais.sanu.ac.rs/123456789/15968
AB  - Here, we report on the ZnO nanoparticles processing employing low-temperature (500 °C) ultrasonic spray pyrolysis (USP) method, using different Zn nitrate precursor solution concentrations (0.01, 0.1 and 1.0 M). Particle structural, morphological and luminescence characteristics were studied based on X-ray powder diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM/HRTEM), thermal analysis, UV–Vis diffuse reflectance spectra and photoluminescence measurements (PL). The generated so-called secondary particles have a hexagonal ZnO wurtzite-type crystalline structure with preferred orientation of (101) plane and quasi-spherical in shape. It was shown that such particle structural and morphological features are independent on the precursor solution concentrations used. All the PL spectra illustrate a strong green-yellow typical emission band exhibiting the corresponding redshift and variation of direct band gap from 3.22 to 3.12 eV with the increase in precursor concentration. The thermal analysis confirmed high thermal nanoparticles stability. The results proved that USP method successfully produces ZnO nanoparticles using neither dispersing agents nor post-heating treatments at high temperature, which allows rapid, continuous, single-step preparation, demonstrating a high potential for industrial applications.
PB  - Springer Berlin Heidelberg
T2  - Applied Physics A
T1  - Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method
VL  - 122
DO  - 10.1007/s00339-016-9708-4
ER  - 
@article{
author = "Flores-Carrasco, Gregorio and Carrillo-Lopez, J. and Martinez-Martinez, R. and Espinosa-Torres, N. D. and Muñoz, Lidia and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2016",
url = "http://dais.sanu.ac.rs/123456789/15968",
abstract = "Here, we report on the ZnO nanoparticles processing employing low-temperature (500 °C) ultrasonic spray pyrolysis (USP) method, using different Zn nitrate precursor solution concentrations (0.01, 0.1 and 1.0 M). Particle structural, morphological and luminescence characteristics were studied based on X-ray powder diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM/HRTEM), thermal analysis, UV–Vis diffuse reflectance spectra and photoluminescence measurements (PL). The generated so-called secondary particles have a hexagonal ZnO wurtzite-type crystalline structure with preferred orientation of (101) plane and quasi-spherical in shape. It was shown that such particle structural and morphological features are independent on the precursor solution concentrations used. All the PL spectra illustrate a strong green-yellow typical emission band exhibiting the corresponding redshift and variation of direct band gap from 3.22 to 3.12 eV with the increase in precursor concentration. The thermal analysis confirmed high thermal nanoparticles stability. The results proved that USP method successfully produces ZnO nanoparticles using neither dispersing agents nor post-heating treatments at high temperature, which allows rapid, continuous, single-step preparation, demonstrating a high potential for industrial applications.",
publisher = "Springer Berlin Heidelberg",
journal = "Applied Physics A",
title = "Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method",
volume = "122",
doi = "10.1007/s00339-016-9708-4"
}
Flores-Carrasco, G., Carrillo-Lopez, J., Martinez-Martinez, R., Espinosa-Torres, N. D., Muñoz, L., Milošević, O.,& Rabanal, M. E. (2016). Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method.
Applied Physics ASpringer Berlin Heidelberg., 122.
https://doi.org/10.1007/s00339-016-9708-4
Flores-Carrasco G, Carrillo-Lopez J, Martinez-Martinez R, Espinosa-Torres ND, Muñoz L, Milošević O, Rabanal ME. Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method. Applied Physics A. 2016;122
Flores-Carrasco Gregorio, Carrillo-Lopez J., Martinez-Martinez R., Espinosa-Torres N. D., Muñoz Lidia, Milošević Olivera, Rabanal Maria Eugenia, "Optical and morpho-structural properties of ZnO nanostructured particles synthesized at low temperature via air-assisted USP method" 122 (2016),
https://doi.org/10.1007/s00339-016-9708-4 .
6
4
7

ZnO&Ag and ZnO&Pt system: synthesis and structural, morphological and functional characterization

Muñoz, Lidia; Sierra-Fernández, Aránzazu; Flores-Carrasco, Gregorio; Gómez-Villalba, Luz Stella; Milošević, Olivera; Rabanal, Maria Eugenia

(Belgrade : Serbian Ceramic Society, 2015)

TY  - CONF
AU  - Muñoz, Lidia
AU  - Sierra-Fernández, Aránzazu
AU  - Flores-Carrasco, Gregorio
AU  - Gómez-Villalba, Luz Stella
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/745
AB  - In the area of nanotechnology, which is one of the most active research fields, well-known functional material (ZnO) generates enormous scientific interest owing to its extraordinary properties and so, its novel applications at the nanometric scale. Besides the ZnO properties and its applications, its photocatalytic behavior has been widely studied. Currently, many works are focused on developing of hybrid materials of noble metal-doped ZnO to improve its catalytic activity. With this aim, using silver or platinum nanoparticles on the surface of nanoparticles could be a suitable option. So, in our study, synthesis (by solvothermal method) and characterization (structural, chemical, morphological among others) of ZnO nanostructured particles with silver or platinum nanoparticles (ZnO&Ag/Pt) have been developed. Afterward, the photocatalytic behavior has been evaluated. The best photocatalytic results (>60 % pollutant removal) demonstrate the viability for its application in the degradation of contaminants in water and, so, prove that the system morphology is critical to the properties of the obtained material.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / IV Serbian Ceramic Society Conference, Belgrade, 21-23. September 2015
T1  - ZnO&Ag and ZnO&Pt system: synthesis and structural, morphological and functional characterization
SP  - 38
EP  - 38
ER  - 
@conference{
author = "Muñoz, Lidia and Sierra-Fernández, Aránzazu and Flores-Carrasco, Gregorio and Gómez-Villalba, Luz Stella and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/745",
abstract = "In the area of nanotechnology, which is one of the most active research fields, well-known functional material (ZnO) generates enormous scientific interest owing to its extraordinary properties and so, its novel applications at the nanometric scale. Besides the ZnO properties and its applications, its photocatalytic behavior has been widely studied. Currently, many works are focused on developing of hybrid materials of noble metal-doped ZnO to improve its catalytic activity. With this aim, using silver or platinum nanoparticles on the surface of nanoparticles could be a suitable option. So, in our study, synthesis (by solvothermal method) and characterization (structural, chemical, morphological among others) of ZnO nanostructured particles with silver or platinum nanoparticles (ZnO&Ag/Pt) have been developed. Afterward, the photocatalytic behavior has been evaluated. The best photocatalytic results (>60 % pollutant removal) demonstrate the viability for its application in the degradation of contaminants in water and, so, prove that the system morphology is critical to the properties of the obtained material.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / IV Serbian Ceramic Society Conference, Belgrade, 21-23. September 2015",
title = "ZnO&Ag and ZnO&Pt system: synthesis and structural, morphological and functional characterization",
pages = "38-38"
}
Muñoz, L., Sierra-Fernández, A., Flores-Carrasco, G., Gómez-Villalba, L. S., Milošević, O.,& Rabanal, M. E. (2015). ZnO&Ag and ZnO&Pt system: synthesis and structural, morphological and functional characterization.
Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / IV Serbian Ceramic Society Conference, Belgrade, 21-23. September 2015Belgrade : Serbian Ceramic Society., 38-38.
Muñoz L, Sierra-Fernández A, Flores-Carrasco G, Gómez-Villalba LS, Milošević O, Rabanal ME. ZnO&Ag and ZnO&Pt system: synthesis and structural, morphological and functional characterization. Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / IV Serbian Ceramic Society Conference, Belgrade, 21-23. September 2015. 2015;:38-38
Muñoz Lidia, Sierra-Fernández Aránzazu, Flores-Carrasco Gregorio, Gómez-Villalba Luz Stella, Milošević Olivera, Rabanal Maria Eugenia, "ZnO&Ag and ZnO&Pt system: synthesis and structural, morphological and functional characterization" (2015):38-38

Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP

Flores-Carrasco, Gregorio; Carrillo, J.; Luna, J. A.; Martínez, R.; Sierra-Fernández, Aránzazu; Milošević, Olivera; Rabanal, Maria Eugenia

(Elsevier, 2014)

TY  - JOUR
AU  - Flores-Carrasco, Gregorio
AU  - Carrillo, J.
AU  - Luna, J. A.
AU  - Martínez, R.
AU  - Sierra-Fernández, Aránzazu
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/651
AB  - ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP
SP  - 1435
EP  - 1441
VL  - 25
IS  - 5
DO  - 10.1016/j.apt.2014.02.004
ER  - 
@article{
author = "Flores-Carrasco, Gregorio and Carrillo, J. and Luna, J. A. and Martínez, R. and Sierra-Fernández, Aránzazu and Milošević, Olivera and Rabanal, Maria Eugenia",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/651",
abstract = "ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP",
pages = "1435-1441",
volume = "25",
number = "5",
doi = "10.1016/j.apt.2014.02.004"
}
Flores-Carrasco, G., Carrillo, J., Luna, J. A., Martínez, R., Sierra-Fernández, A., Milošević, O.,& Rabanal, M. E. (2014). Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP.
Advanced Powder TechnologyElsevier., 25(5), 1435-1441.
https://doi.org/10.1016/j.apt.2014.02.004
Flores-Carrasco G, Carrillo J, Luna JA, Martínez R, Sierra-Fernández A, Milošević O, Rabanal ME. Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP. Advanced Powder Technology. 2014;25(5):1435-1441
Flores-Carrasco Gregorio, Carrillo J., Luna J. A., Martínez R., Sierra-Fernández Aránzazu, Milošević Olivera, Rabanal Maria Eugenia, "Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP" 25, no. 5 (2014):1435-1441,
https://doi.org/10.1016/j.apt.2014.02.004 .
19
13
18

Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method

Sierra-Fernández, Aránzazu; Flores-Carrasco, Gregorio; Gómez-Villalba, Luz Stella; Milošević, Olivera; Fort, R.; Rabanal, Maria Eugenia

(Belgrade : Serbian Ceramic Society, 2014)

TY  - CONF
AU  - Sierra-Fernández, Aránzazu
AU  - Flores-Carrasco, Gregorio
AU  - Gómez-Villalba, Luz Stella
AU  - Milošević, Olivera
AU  - Fort, R.
AU  - Rabanal, Maria Eugenia
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/592
AB  - The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have been characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
T1  - Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method
SP  - 52
EP  - 52
ER  - 
@conference{
author = "Sierra-Fernández, Aránzazu and Flores-Carrasco, Gregorio and Gómez-Villalba, Luz Stella and Milošević, Olivera and Fort, R. and Rabanal, Maria Eugenia",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/592",
abstract = "The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have been characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014",
title = "Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method",
pages = "52-52"
}
Sierra-Fernández, A., Flores-Carrasco, G., Gómez-Villalba, L. S., Milošević, O., Fort, R.,& Rabanal, M. E. (2014). Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method.
Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014Belgrade : Serbian Ceramic Society., 52-52.
Sierra-Fernández A, Flores-Carrasco G, Gómez-Villalba LS, Milošević O, Fort R, Rabanal ME. Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method. Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014. 2014;:52-52
Sierra-Fernández Aránzazu, Flores-Carrasco Gregorio, Gómez-Villalba Luz Stella, Milošević Olivera, Fort R., Rabanal Maria Eugenia, "Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method" (2014):52-52

Propiedades estructurales, ópticas y eléctricas de películas de SnO2y SnO2:F depositadas por rocío pirolítico ultrasónico

Flores-Carrasco, Gregorio; Alcántara-Iniesta, Salvador; Sierra-Fernández, Aránzazu; Gómez-Villalba, Luz Stella; Rabanal, Maria Eugenia; Milošević, Olivera

(Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales, 2014)

TY  - JOUR
AU  - Flores-Carrasco, Gregorio
AU  - Alcántara-Iniesta, Salvador
AU  - Sierra-Fernández, Aránzazu
AU  - Gómez-Villalba, Luz Stella
AU  - Rabanal, Maria Eugenia
AU  - Milošević, Olivera
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/652
AB  - In this research, we report the preparation and characterization of SnO2thin films preparation by the Ultrasonic Spray Pyrolysis technique using different fluorine content dissolved in ethanol as precursor solution, for its possible application as TCO's. The structural, optical and electric properties of synthesized SnO2:F films have been characterized by X-ray Diffraction (XRD), Profilometer, UV - Vis-NIR spectroscopy and electrical measurements by Hall Effect. Also structural changes were studied by X-ray diffraction. The main results show that the electrical resistivity of the films decreased with the fluorine content. The best electro-optical properties (electrical resistivity of 4.14x10-4O-cm and average transmittance of 80 [%]) were achieved in a fluorine content in relative with tin of about 0.52. Furthermore, a systematic change was observed in the intensity of the lines of the diffraction maxima of X-rays in function of fluorine content. ©Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales.
AB  - En esta investigación, reportamos la preparación y caracterización de películas delgadas de SnO2 preparadas por la técnica de Rocío Pirolítico Ultrasónico con diferente contenido de flúor disuelto en etanol como solución precursora, para su posible aplicación como TCO´s. Las propiedades estructurales, ópticas y eléctricas de películas SnO2:F sintetizadas se caracterizaron mediante Difracción de Rayos-X (DRX), Perfilometria, Espectroscopia UV-Vis-NIR y mediciones eléctricas por Efecto Hall. Asimismo los cambios estructurales se estudiaron mediante Difracción de Rayos-X. Los principales resultados muestran que la resistividad eléctrica de las películas disminuyó con el contenido de flúor. Las mejores propiedades electro-ópticas (resistividad eléctrica de 4.14x10-4 Ω-cm y transmitancia media de 80 %) se alcanzaron en un contenido de flúor con relación de estaño de aproximadamente 0.52. Además, se observó un cambio sistemático en la intensidad de las líneas de los máximos de difracción de rayos-X en función del contenido de flúor.
PB  - Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales
T2  - Superficies y Vacio
T1  - Propiedades estructurales, ópticas y eléctricas de películas de SnO2y SnO2:F depositadas por rocío pirolítico ultrasónico
SP  - 126
EP  - 132
ER  - 
@article{
author = "Flores-Carrasco, Gregorio and Alcántara-Iniesta, Salvador and Sierra-Fernández, Aránzazu and Gómez-Villalba, Luz Stella and Rabanal, Maria Eugenia and Milošević, Olivera",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/652",
abstract = "In this research, we report the preparation and characterization of SnO2thin films preparation by the Ultrasonic Spray Pyrolysis technique using different fluorine content dissolved in ethanol as precursor solution, for its possible application as TCO's. The structural, optical and electric properties of synthesized SnO2:F films have been characterized by X-ray Diffraction (XRD), Profilometer, UV - Vis-NIR spectroscopy and electrical measurements by Hall Effect. Also structural changes were studied by X-ray diffraction. The main results show that the electrical resistivity of the films decreased with the fluorine content. The best electro-optical properties (electrical resistivity of 4.14x10-4O-cm and average transmittance of 80 [%]) were achieved in a fluorine content in relative with tin of about 0.52. Furthermore, a systematic change was observed in the intensity of the lines of the diffraction maxima of X-rays in function of fluorine content. ©Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales., En esta investigación, reportamos la preparación y caracterización de películas delgadas de SnO2 preparadas por la técnica de Rocío Pirolítico Ultrasónico con diferente contenido de flúor disuelto en etanol como solución precursora, para su posible aplicación como TCO´s. Las propiedades estructurales, ópticas y eléctricas de películas SnO2:F sintetizadas se caracterizaron mediante Difracción de Rayos-X (DRX), Perfilometria, Espectroscopia UV-Vis-NIR y mediciones eléctricas por Efecto Hall. Asimismo los cambios estructurales se estudiaron mediante Difracción de Rayos-X. Los principales resultados muestran que la resistividad eléctrica de las películas disminuyó con el contenido de flúor. Las mejores propiedades electro-ópticas (resistividad eléctrica de 4.14x10-4 Ω-cm y transmitancia media de 80 %) se alcanzaron en un contenido de flúor con relación de estaño de aproximadamente 0.52. Además, se observó un cambio sistemático en la intensidad de las líneas de los máximos de difracción de rayos-X en función del contenido de flúor.",
publisher = "Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales",
journal = "Superficies y Vacio",
title = "Propiedades estructurales, ópticas y eléctricas de películas de SnO2y SnO2:F depositadas por rocío pirolítico ultrasónico",
pages = "126-132"
}
Flores-Carrasco, G., Alcántara-Iniesta, S., Sierra-Fernández, A., Gómez-Villalba, L. S., Rabanal, M. E.,& Milošević, O. (2014). Propiedades estructurales, ópticas y eléctricas de películas de SnO2y SnO2:F depositadas por rocío pirolítico ultrasónico.
Superficies y VacioSociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales., 126-132.
Flores-Carrasco G, Alcántara-Iniesta S, Sierra-Fernández A, Gómez-Villalba LS, Rabanal ME, Milošević O. Propiedades estructurales, ópticas y eléctricas de películas de SnO2y SnO2:F depositadas por rocío pirolítico ultrasónico. Superficies y Vacio. 2014;:126-132
Flores-Carrasco Gregorio, Alcántara-Iniesta Salvador, Sierra-Fernández Aránzazu, Gómez-Villalba Luz Stella, Rabanal Maria Eugenia, Milošević Olivera, "Propiedades estructurales, ópticas y eléctricas de películas de SnO2y SnO2:F depositadas por rocío pirolítico ultrasónico" (2014):126-132
3

Directed growth of nanoarchitected hydrid ceramic particles synthesised at low temperature

Rabanal Jiménez, Maria Eugenia; Flores-Carrasco, Gregorio; Gómez, Luz Stella; Barroso, Ignacio; Mančić, Lidija; Milošević, Olivera

(Iasi : ModTech Professional Association, 2013)

TY  - CONF
AU  - Rabanal Jiménez, Maria Eugenia
AU  - Flores-Carrasco, Gregorio
AU  - Gómez, Luz Stella
AU  - Barroso, Ignacio
AU  - Mančić, Lidija
AU  - Milošević, Olivera
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/817
AB  - Nanotechnology is an emerging science involving synthesis and optimization of matter at the nanometer scale. The recent rise in the interest surrounding nanotechnology stems from its potential to revolutionize such fields as engineering and medicine. Nanoparticles, the building blocks of nanotechnology, have been broadly defined as having at least one dimension at 100 nm or less. Engineered nanoparticles are particles synthesized to exploit the size-related properties inherent in the nanoscale (e.g. conductivity, spectral properties, electrochemical properties, ... Spray pyrolysis is a versatile process regarding the powder synthesis of inorganic material. An atomizer (such as ultrasonic) is used to generate a mist from a water or organic solution of inorganic salts or metal organic compounds. The advantages of this method are that the control of particle size, particle size distribution, morphology, crystallite structure and chemical composition are possible. On the order hand, the hydrothermal synthesis is a useful method to prepare nanomaterials with homogeneous crystal structure and morphology, which has some advantages such as simple synthesis process and low energy consumption. In this work, different morphologies of zinc oxide (ZnO), including microrods, microspheres, hexagonal microprism, nanosheets or flower like have been obtained depending on what experimental conditions and synthesis method have been used. Also, hollow and spherical Ag/Y203:Eu (9% at) hybrid nanostructured particles by means of aerosol route from common nitrate solutions at 750°C in Ar atmosphere has been obtained. These as-prepared samples were additionally heated at temperatures up from 800° C to 1200 °C for 12h in argon atmosphere. The microstructures, morphologies and optical and functional properties of the as-prepared and heated samples were investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), UV-VIS spectroscopy.
The photocatalytic activity of ZnO synthesized by different methods and experimental conditions was evaluated by removal rate of methyleneblue under UV irradiation (365 nm) at room temperature. The results showed that the photocatalytic efficiency of ZnO particles was enhanced by increased precursor concentration. In the case of Ag/Y203 systems, the luminescence results reveal a huge rise in the final luminescence properties as consequence of the "mirror effect" due to the presence of Ag nanoparticles.
PB  - Iasi : ModTech Professional Association
C3  - ModTech 2013: 1st International Conference Modern Technologies in Industrial Engineering, 27-29 June 2013, Mara Hotel, Sinaia, Romania: Book of abstract
T1  - Directed growth of nanoarchitected hydrid ceramic particles synthesised at low temperature
SP  - 35
EP  - 35
ER  - 
@conference{
author = "Rabanal Jiménez, Maria Eugenia and Flores-Carrasco, Gregorio and Gómez, Luz Stella and Barroso, Ignacio and Mančić, Lidija and Milošević, Olivera",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/817",
abstract = "Nanotechnology is an emerging science involving synthesis and optimization of matter at the nanometer scale. The recent rise in the interest surrounding nanotechnology stems from its potential to revolutionize such fields as engineering and medicine. Nanoparticles, the building blocks of nanotechnology, have been broadly defined as having at least one dimension at 100 nm or less. Engineered nanoparticles are particles synthesized to exploit the size-related properties inherent in the nanoscale (e.g. conductivity, spectral properties, electrochemical properties, ... Spray pyrolysis is a versatile process regarding the powder synthesis of inorganic material. An atomizer (such as ultrasonic) is used to generate a mist from a water or organic solution of inorganic salts or metal organic compounds. The advantages of this method are that the control of particle size, particle size distribution, morphology, crystallite structure and chemical composition are possible. On the order hand, the hydrothermal synthesis is a useful method to prepare nanomaterials with homogeneous crystal structure and morphology, which has some advantages such as simple synthesis process and low energy consumption. In this work, different morphologies of zinc oxide (ZnO), including microrods, microspheres, hexagonal microprism, nanosheets or flower like have been obtained depending on what experimental conditions and synthesis method have been used. Also, hollow and spherical Ag/Y203:Eu (9% at) hybrid nanostructured particles by means of aerosol route from common nitrate solutions at 750°C in Ar atmosphere has been obtained. These as-prepared samples were additionally heated at temperatures up from 800° C to 1200 °C for 12h in argon atmosphere. The microstructures, morphologies and optical and functional properties of the as-prepared and heated samples were investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), UV-VIS spectroscopy.
The photocatalytic activity of ZnO synthesized by different methods and experimental conditions was evaluated by removal rate of methyleneblue under UV irradiation (365 nm) at room temperature. The results showed that the photocatalytic efficiency of ZnO particles was enhanced by increased precursor concentration. In the case of Ag/Y203 systems, the luminescence results reveal a huge rise in the final luminescence properties as consequence of the "mirror effect" due to the presence of Ag nanoparticles.",
publisher = "Iasi : ModTech Professional Association",
journal = "ModTech 2013: 1st International Conference Modern Technologies in Industrial Engineering, 27-29 June 2013, Mara Hotel, Sinaia, Romania: Book of abstract",
title = "Directed growth of nanoarchitected hydrid ceramic particles synthesised at low temperature",
pages = "35-35"
}
Rabanal Jiménez, M. E., Flores-Carrasco, G., Gómez, L. S., Barroso, I., Mančić, L.,& Milošević, O. (2013). Directed growth of nanoarchitected hydrid ceramic particles synthesised at low temperature.
ModTech 2013: 1st International Conference Modern Technologies in Industrial Engineering, 27-29 June 2013, Mara Hotel, Sinaia, Romania: Book of abstractIasi : ModTech Professional Association., 35-35.
Rabanal Jiménez ME, Flores-Carrasco G, Gómez LS, Barroso I, Mančić L, Milošević O. Directed growth of nanoarchitected hydrid ceramic particles synthesised at low temperature. ModTech 2013: 1st International Conference Modern Technologies in Industrial Engineering, 27-29 June 2013, Mara Hotel, Sinaia, Romania: Book of abstract. 2013;:35-35
Rabanal Jiménez Maria Eugenia, Flores-Carrasco Gregorio, Gómez Luz Stella, Barroso Ignacio, Mančić Lidija, Milošević Olivera, "Directed growth of nanoarchitected hydrid ceramic particles synthesised at low temperature" (2013):35-35