Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (1)
Type
Version
Access

Baščarević, Zvezdana D.

Link to this page

Authority KeyName Variants
e1d00bbd-f3b9-4978-94e2-148d20a6e8eb
  • Baščarević, Zvezdana D. (1)
Projects

Author's Bibliography

Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient

Omerašević, Mia; Lukić, Miodrag J.; Savić-Biserčić, Marjetka; Savić, Andrija B.; Matović, Ljiljana; Baščarević, Zvezdana D.; Bučevac, Dušan

(2020)

TY  - JOUR
AU  - Omerašević, Mia
AU  - Lukić, Miodrag J.
AU  - Savić-Biserčić, Marjetka
AU  - Savić, Andrija B.
AU  - Matović, Ljiljana
AU  - Baščarević, Zvezdana D.
AU  - Bučevac, Dušan
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8725
AB  - A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 °C to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 °C for 3 h. Heterogeneity of samples obtained at 950 °C was determined using scanning electron microscopy. The pollucite hot-pressed at 950 °C had low linear thermal expansion coefficient of ∼4.67 × 10−6 K−1 in the temperature range from 100 to 1000 °C. © 2019
T2  - Nuclear Engineering and Technology
T1  - Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient
SP  - 115
EP  - 122
VL  - 52
IS  - 1
DO  - 10.1016/j.net.2019.07.001
ER  - 
@article{
author = "Omerašević, Mia and Lukić, Miodrag J. and Savić-Biserčić, Marjetka and Savić, Andrija B. and Matović, Ljiljana and Baščarević, Zvezdana D. and Bučevac, Dušan",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8725",
abstract = "A promising method for removal of Cs ions from water and their incorporation into stable crystal structure ready for safe and permanent disposal was described. Cs-exchanged X zeolite was hot-pressed at temperature ranging from 800 to 950 °C to fabricate dense pollucite ceramics. It was found that the application of external pressure reduced the pollucite formation temperature. The effect of sintering temperature on density, phase composition and mechanical properties was investigated. The highest density of 92.5 %TD and the highest compressive strength of 79 MPa were measured in pollucite hot-pressed at 950 °C for 3 h. Heterogeneity of samples obtained at 950 °C was determined using scanning electron microscopy. The pollucite hot-pressed at 950 °C had low linear thermal expansion coefficient of ∼4.67 × 10−6 K−1 in the temperature range from 100 to 1000 °C. © 2019",
journal = "Nuclear Engineering and Technology",
title = "Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient",
pages = "115-122",
volume = "52",
number = "1",
doi = "10.1016/j.net.2019.07.001"
}
Omerašević, M., Lukić, M. J., Savić-Biserčić, M., Savić, A. B., Matović, L., Baščarević, Z. D.,& Bučevac, D. (2020). Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient.
Nuclear Engineering and Technology, 52(1), 115-122.
https://doi.org/10.1016/j.net.2019.07.001
Omerašević M, Lukić MJ, Savić-Biserčić M, Savić AB, Matović L, Baščarević ZD, Bučevac D. Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient. Nuclear Engineering and Technology. 2020;52(1):115-122
Omerašević Mia, Lukić Miodrag J., Savić-Biserčić Marjetka, Savić Andrija B., Matović Ljiljana, Baščarević Zvezdana D., Bučevac Dušan, "Permanent disposal of Cs ions in the form of dense pollucite ceramics having low thermal expansion coefficient" 52, no. 1 (2020):115-122,
https://doi.org/10.1016/j.net.2019.07.001 .
2
2
2