Neto, Guilherme Nunes Nogueira

Link to this page

Authority KeyName Variants
dc42a265-fafc-4d2e-9bf6-b65f166e71f7
  • Neto, Guilherme Nunes Nogueira (1)
Projects

Author's Bibliography

Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury

Krueger, Eddy; Popović-Maneski, Lana; Neto, Guilherme Nunes Nogueira; Mendonça Scheeren, Eduardo; Fiusa, Jessika Mehret; Nohama, Percy

(Springer, 2020)

TY  - JOUR
AU  - Krueger, Eddy
AU  - Popović-Maneski, Lana
AU  - Neto, Guilherme Nunes Nogueira
AU  - Mendonça Scheeren, Eduardo
AU  - Fiusa, Jessika Mehret
AU  - Nohama, Percy
PY  - 2020
UR  - https://doi.org/10.1007/s42600-020-00061-z
UR  - https://dais.sanu.ac.rs/123456789/9817
AB  - Functional electrical stimulation (FES) is a method of activating paralyzed muscles. During FES application, fast muscle fatigue can occur (the inability of stimulated muscles to generate force). Therefore, it is beneficial to estimate the muscle fatigue for FES closed-loop control for walking to prevent unexpected muscle collapse and adapt the FES strategy in real time. Mechanomyography (MMG) is a noninvasive technique for registering myofiber vibrations, representing an ideal candidate for the provision of feedback. The hypothesis was that MMG signals could effectively detect muscle fatigue and, thus, provide feedback.
PB  - Springer
T2  - Research on Biomedical Engineering
T1  - Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury
SP  - 203
EP  - 212
VL  - 36
IS  - 3
DO  - 10.1007/s42600-020-00061-z
UR  - https://hdl.handle.net/21.15107/rcub_dais_9817
ER  - 
@article{
author = "Krueger, Eddy and Popović-Maneski, Lana and Neto, Guilherme Nunes Nogueira and Mendonça Scheeren, Eduardo and Fiusa, Jessika Mehret and Nohama, Percy",
year = "2020",
abstract = "Functional electrical stimulation (FES) is a method of activating paralyzed muscles. During FES application, fast muscle fatigue can occur (the inability of stimulated muscles to generate force). Therefore, it is beneficial to estimate the muscle fatigue for FES closed-loop control for walking to prevent unexpected muscle collapse and adapt the FES strategy in real time. Mechanomyography (MMG) is a noninvasive technique for registering myofiber vibrations, representing an ideal candidate for the provision of feedback. The hypothesis was that MMG signals could effectively detect muscle fatigue and, thus, provide feedback.",
publisher = "Springer",
journal = "Research on Biomedical Engineering",
title = "Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury",
pages = "203-212",
volume = "36",
number = "3",
doi = "10.1007/s42600-020-00061-z",
url = "https://hdl.handle.net/21.15107/rcub_dais_9817"
}
Krueger, E., Popović-Maneski, L., Neto, G. N. N., Mendonça Scheeren, E., Fiusa, J. M.,& Nohama, P.. (2020). Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury. in Research on Biomedical Engineering
Springer., 36(3), 203-212.
https://doi.org/10.1007/s42600-020-00061-z
https://hdl.handle.net/21.15107/rcub_dais_9817
Krueger E, Popović-Maneski L, Neto GNN, Mendonça Scheeren E, Fiusa JM, Nohama P. Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury. in Research on Biomedical Engineering. 2020;36(3):203-212.
doi:10.1007/s42600-020-00061-z
https://hdl.handle.net/21.15107/rcub_dais_9817 .
Krueger, Eddy, Popović-Maneski, Lana, Neto, Guilherme Nunes Nogueira, Mendonça Scheeren, Eduardo, Fiusa, Jessika Mehret, Nohama, Percy, "Neuromuscular fatigue detection by mechanomyography in people with complete spinal cord injury" in Research on Biomedical Engineering, 36, no. 3 (2020):203-212,
https://doi.org/10.1007/s42600-020-00061-z .,
https://hdl.handle.net/21.15107/rcub_dais_9817 .
3
3