Hadžievski, Ljupčo

Link to this page

Authority KeyName Variants
d951b8b6-c9ab-454b-9fa9-793ca662df30
  • Hadžievski, Ljupčo (3)
Projects

Author's Bibliography

Properties of different types of dry electrodes for wearable smart monitoring devices

Popović Maneski, Lana; Ivanović, Marija D.; Atanasoski, Vladimir; Miletić, Marjan; Zdolšek, Sanja; Bojović, Boško; Hadžievski, Ljupčo

(Walter de Gruyter GmbH, 2020)

TY  - JOUR
AU  - Popović Maneski, Lana
AU  - Ivanović, Marija D.
AU  - Atanasoski, Vladimir
AU  - Miletić, Marjan
AU  - Zdolšek, Sanja
AU  - Bojović, Boško
AU  - Hadžievski, Ljupčo
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/11598
AB  - Wearable smart monitors (WSMs) applied for the estimation of electrophysiological signals are of utmost interest for a non-stressed life. WSM which records heart muscle activities could signalize timely a life-threatening event. The heart muscle activities are typically recorded across the heart at the surface of the body; hence, a WSM monitor requires high-quality surface electrodes. The electrodes used in the clinical settings [i.e. silver/silver chloride (Ag/AgCl) with the gel] are not practical for the daily out of clinic usage. A practical WSM requires the application of a dry electrode with stable and reproducible electrical characteristics. We compared the characteristics of six types of dry electrodes and one gelled electrode during short-term recordings sessions (≈30 s) in real-life conditions: Orbital, monolithic polymer plated with Ag/AgCl, and five rectangular shaped 10 × 6 × 2 mm electrodes (Orbital, Ag electrode, Ag/AgCl electrode, gold electrode and stainless-steel AISI304). The results of a well-controlled analysis which considered motion artifacts, line noise and junction potentials suggest that among the dry electrodes Ag/AgCl performs the best. The Ag/AgCl electrode is in average three times better compared with the stainless-steel electrode often used in WSMs.
PB  - Walter de Gruyter GmbH
T2  - Biomedical Engineering / Biomedizinische Technik
T1  - Properties of different types of dry electrodes for wearable smart monitoring devices
SP  - 405
EP  - 415
VL  - 65
IS  - 4
DO  - 10.1515/bmt-2019-0167
UR  - https://hdl.handle.net/21.15107/rcub_dais_11598
ER  - 
@article{
author = "Popović Maneski, Lana and Ivanović, Marija D. and Atanasoski, Vladimir and Miletić, Marjan and Zdolšek, Sanja and Bojović, Boško and Hadžievski, Ljupčo",
year = "2020",
abstract = "Wearable smart monitors (WSMs) applied for the estimation of electrophysiological signals are of utmost interest for a non-stressed life. WSM which records heart muscle activities could signalize timely a life-threatening event. The heart muscle activities are typically recorded across the heart at the surface of the body; hence, a WSM monitor requires high-quality surface electrodes. The electrodes used in the clinical settings [i.e. silver/silver chloride (Ag/AgCl) with the gel] are not practical for the daily out of clinic usage. A practical WSM requires the application of a dry electrode with stable and reproducible electrical characteristics. We compared the characteristics of six types of dry electrodes and one gelled electrode during short-term recordings sessions (≈30 s) in real-life conditions: Orbital, monolithic polymer plated with Ag/AgCl, and five rectangular shaped 10 × 6 × 2 mm electrodes (Orbital, Ag electrode, Ag/AgCl electrode, gold electrode and stainless-steel AISI304). The results of a well-controlled analysis which considered motion artifacts, line noise and junction potentials suggest that among the dry electrodes Ag/AgCl performs the best. The Ag/AgCl electrode is in average three times better compared with the stainless-steel electrode often used in WSMs.",
publisher = "Walter de Gruyter GmbH",
journal = "Biomedical Engineering / Biomedizinische Technik",
title = "Properties of different types of dry electrodes for wearable smart monitoring devices",
pages = "405-415",
volume = "65",
number = "4",
doi = "10.1515/bmt-2019-0167",
url = "https://hdl.handle.net/21.15107/rcub_dais_11598"
}
Popović Maneski, L., Ivanović, M. D., Atanasoski, V., Miletić, M., Zdolšek, S., Bojović, B.,& Hadžievski, L.. (2020). Properties of different types of dry electrodes for wearable smart monitoring devices. in Biomedical Engineering / Biomedizinische Technik
Walter de Gruyter GmbH., 65(4), 405-415.
https://doi.org/10.1515/bmt-2019-0167
https://hdl.handle.net/21.15107/rcub_dais_11598
Popović Maneski L, Ivanović MD, Atanasoski V, Miletić M, Zdolšek S, Bojović B, Hadžievski L. Properties of different types of dry electrodes for wearable smart monitoring devices. in Biomedical Engineering / Biomedizinische Technik. 2020;65(4):405-415.
doi:10.1515/bmt-2019-0167
https://hdl.handle.net/21.15107/rcub_dais_11598 .
Popović Maneski, Lana, Ivanović, Marija D., Atanasoski, Vladimir, Miletić, Marjan, Zdolšek, Sanja, Bojović, Boško, Hadžievski, Ljupčo, "Properties of different types of dry electrodes for wearable smart monitoring devices" in Biomedical Engineering / Biomedizinische Technik, 65, no. 4 (2020):405-415,
https://doi.org/10.1515/bmt-2019-0167 .,
https://hdl.handle.net/21.15107/rcub_dais_11598 .
8
8

Properties of different types of dry electrodes for wearable smart monitoring devices

Popović Maneski, Lana; Ivanović, Marija D.; Atanasoski, Vladimir; Miletić, Marjan; Zdolšek, Sanja; Bojović, Boško; Hadžievski, Ljupčo

(Walter de Gruyter GmbH, 2020)

TY  - JOUR
AU  - Popović Maneski, Lana
AU  - Ivanović, Marija D.
AU  - Atanasoski, Vladimir
AU  - Miletić, Marjan
AU  - Zdolšek, Sanja
AU  - Bojović, Boško
AU  - Hadžievski, Ljupčo
PY  - 2020
UR  - https://dais.sanu.ac.rs/123456789/10028
AB  - Wearable smart monitors (WSMs) applied for the estimation of electrophysiological signals are of utmost interest for a non-stressed life. WSM which records heart muscle activities could signalize timely a life-threatening event. The heart muscle activities are typically recorded across the heart at the surface of the body; hence, a WSM monitor requires high-quality surface electrodes. The electrodes used in the clinical settings [i.e. silver/silver chloride (Ag/AgCl) with the gel] are not practical for the daily out of clinic usage. A practical WSM requires the application of a dry electrode with stable and reproducible electrical characteristics. We compared the characteristics of six types of dry electrodes and one gelled electrode during short-term recordings sessions (≈30 s) in real-life conditions: Orbital, monolithic polymer plated with Ag/AgCl, and five rectangular shaped 10 × 6 × 2 mm electrodes (Orbital, Ag electrode, Ag/AgCl electrode, gold electrode and stainless-steel AISI304). The results of a well-controlled analysis which considered motion artifacts, line noise and junction potentials suggest that among the dry electrodes Ag/AgCl performs the best. The Ag/AgCl electrode is in average three times better compared with the stainless-steel electrode often used in WSMs.
PB  - Walter de Gruyter GmbH
T2  - Biomedical Engineering / Biomedizinische Technik
T1  - Properties of different types of dry electrodes for wearable smart monitoring devices
SP  - 405
EP  - 415
VL  - 65
IS  - 4
DO  - 10.1515/bmt-2019-0167
UR  - https://hdl.handle.net/21.15107/rcub_dais_10028
ER  - 
@article{
author = "Popović Maneski, Lana and Ivanović, Marija D. and Atanasoski, Vladimir and Miletić, Marjan and Zdolšek, Sanja and Bojović, Boško and Hadžievski, Ljupčo",
year = "2020",
abstract = "Wearable smart monitors (WSMs) applied for the estimation of electrophysiological signals are of utmost interest for a non-stressed life. WSM which records heart muscle activities could signalize timely a life-threatening event. The heart muscle activities are typically recorded across the heart at the surface of the body; hence, a WSM monitor requires high-quality surface electrodes. The electrodes used in the clinical settings [i.e. silver/silver chloride (Ag/AgCl) with the gel] are not practical for the daily out of clinic usage. A practical WSM requires the application of a dry electrode with stable and reproducible electrical characteristics. We compared the characteristics of six types of dry electrodes and one gelled electrode during short-term recordings sessions (≈30 s) in real-life conditions: Orbital, monolithic polymer plated with Ag/AgCl, and five rectangular shaped 10 × 6 × 2 mm electrodes (Orbital, Ag electrode, Ag/AgCl electrode, gold electrode and stainless-steel AISI304). The results of a well-controlled analysis which considered motion artifacts, line noise and junction potentials suggest that among the dry electrodes Ag/AgCl performs the best. The Ag/AgCl electrode is in average three times better compared with the stainless-steel electrode often used in WSMs.",
publisher = "Walter de Gruyter GmbH",
journal = "Biomedical Engineering / Biomedizinische Technik",
title = "Properties of different types of dry electrodes for wearable smart monitoring devices",
pages = "405-415",
volume = "65",
number = "4",
doi = "10.1515/bmt-2019-0167",
url = "https://hdl.handle.net/21.15107/rcub_dais_10028"
}
Popović Maneski, L., Ivanović, M. D., Atanasoski, V., Miletić, M., Zdolšek, S., Bojović, B.,& Hadžievski, L.. (2020). Properties of different types of dry electrodes for wearable smart monitoring devices. in Biomedical Engineering / Biomedizinische Technik
Walter de Gruyter GmbH., 65(4), 405-415.
https://doi.org/10.1515/bmt-2019-0167
https://hdl.handle.net/21.15107/rcub_dais_10028
Popović Maneski L, Ivanović MD, Atanasoski V, Miletić M, Zdolšek S, Bojović B, Hadžievski L. Properties of different types of dry electrodes for wearable smart monitoring devices. in Biomedical Engineering / Biomedizinische Technik. 2020;65(4):405-415.
doi:10.1515/bmt-2019-0167
https://hdl.handle.net/21.15107/rcub_dais_10028 .
Popović Maneski, Lana, Ivanović, Marija D., Atanasoski, Vladimir, Miletić, Marjan, Zdolšek, Sanja, Bojović, Boško, Hadžievski, Ljupčo, "Properties of different types of dry electrodes for wearable smart monitoring devices" in Biomedical Engineering / Biomedizinische Technik, 65, no. 4 (2020):405-415,
https://doi.org/10.1515/bmt-2019-0167 .,
https://hdl.handle.net/21.15107/rcub_dais_10028 .
8
8

Multi-sensor acquisition system for noninvasive detection of heart failure

Lazović, Aleksandar; Popović Maneski, Lana; Hadžievski, Ljupčo

(Belgrade : ETRAN, 2019)

TY  - CONF
AU  - Lazović, Aleksandar
AU  - Popović Maneski, Lana
AU  - Hadžievski, Ljupčo
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6966
AB  - To research the possibility of noninvasive detection of heart failure we developed an acquisition system with multiple sensors. The system synchronously measures cardiovascular pulsations, heart sounds and ECG using different types of sensors positioned only on the patient’s body. The system has a modular structure with five modules: 1. Module for controlling the light source (MWLS) 2. Module for data acquisition from fiber optical sensors (FBGA) with the compact optical spectral analyzer 3. Module for the acquisition of hearth sounds (PCG) with four ports for microphones; 4. Module for the acquisition of standard ECG signals; 5. Module for data acquisition from three accelerometers and three photoplethysmography sensors (ACC/PPG).
PB  - Belgrade : ETRAN
PB  - Belgrade : Academic Mind
C3  - Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine
T1  - Multi-sensor acquisition system for noninvasive detection of heart failure
SP  - 235
EP  - 238
UR  - https://hdl.handle.net/21.15107/rcub_dais_6966
ER  - 
@conference{
author = "Lazović, Aleksandar and Popović Maneski, Lana and Hadžievski, Ljupčo",
year = "2019",
abstract = "To research the possibility of noninvasive detection of heart failure we developed an acquisition system with multiple sensors. The system synchronously measures cardiovascular pulsations, heart sounds and ECG using different types of sensors positioned only on the patient’s body. The system has a modular structure with five modules: 1. Module for controlling the light source (MWLS) 2. Module for data acquisition from fiber optical sensors (FBGA) with the compact optical spectral analyzer 3. Module for the acquisition of hearth sounds (PCG) with four ports for microphones; 4. Module for the acquisition of standard ECG signals; 5. Module for data acquisition from three accelerometers and three photoplethysmography sensors (ACC/PPG).",
publisher = "Belgrade : ETRAN, Belgrade : Academic Mind",
journal = "Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine",
title = "Multi-sensor acquisition system for noninvasive detection of heart failure",
pages = "235-238",
url = "https://hdl.handle.net/21.15107/rcub_dais_6966"
}
Lazović, A., Popović Maneski, L.,& Hadžievski, L.. (2019). Multi-sensor acquisition system for noninvasive detection of heart failure. in Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine
Belgrade : ETRAN., 235-238.
https://hdl.handle.net/21.15107/rcub_dais_6966
Lazović A, Popović Maneski L, Hadžievski L. Multi-sensor acquisition system for noninvasive detection of heart failure. in Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine. 2019;:235-238.
https://hdl.handle.net/21.15107/rcub_dais_6966 .
Lazović, Aleksandar, Popović Maneski, Lana, Hadžievski, Ljupčo, "Multi-sensor acquisition system for noninvasive detection of heart failure" in Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine (2019):235-238,
https://hdl.handle.net/21.15107/rcub_dais_6966 .