Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2015 (1)
2013 (1)
2012 (1)
Type
Version

Ahrenkiel, Scott P.

Link to this page

Authority KeyName Variants
orcid::0000-0002-7179-7673
  • Ahrenkiel, Scott P. (3)
Projects

Author's Bibliography

Spherical assemblies of titania nanotubes generated through aerosol processing

Jovanović, Dragana J.; Dugandžić, Ivan; Ćirić Marjanović, Gordana; Radetić, Tamara; Ahrenkiel, Scott P.; Milošević, Olivera; Nedeljković, Jovan; Šaponjić, Zoran; Mančić, Lidija

(Elsevier, 2015)

TY  - JOUR
AU  - Jovanović, Dragana J.
AU  - Dugandžić, Ivan
AU  - Ćirić Marjanović, Gordana
AU  - Radetić, Tamara
AU  - Ahrenkiel, Scott P.
AU  - Milošević, Olivera
AU  - Nedeljković, Jovan
AU  - Šaponjić, Zoran
AU  - Mančić, Lidija
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/3523
AB  - We report on the possibility to build hierarchically organized three-dimensional (3D) titania spherical particles having high surface-to-volume-ratio, by aerosol processing of nanotubular building blocks. Morphology and crystal structure of titania based spherical assemblies, obtained in the temperature range from 150 to 650°C, were characterized by means of scanning and transmission electron microscopy, x-ray powder diffraction and Raman spectroscopy. Initial shape of 1D building units, nanotubes, was well preserved in the spherical assemblies processed at 150 and 450°C. Processing at 650°C resulted in a collapse of the nanotubular building blocks and formation of the assemblies of irregularly shaped TiO2 nanoparticles. Structural analysis revealed several phase transitions in titania spherical assemblies in course with the temperature increase indicating possibility of in-situ phase composition adjustment during aerosol processing. © 2015 Elsevier Ltd and Techna Group S.r.l.
PB  - Elsevier
T2  - Ceramics International
T1  - Spherical assemblies of titania nanotubes generated through aerosol processing
SP  - 14754
EP  - 14759
VL  - 41
IS  - 10, Part B
DO  - 10.1016/j.ceramint.2015.07.205
ER  - 
@article{
author = "Jovanović, Dragana J. and Dugandžić, Ivan and Ćirić Marjanović, Gordana and Radetić, Tamara and Ahrenkiel, Scott P. and Milošević, Olivera and Nedeljković, Jovan and Šaponjić, Zoran and Mančić, Lidija",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/3523",
abstract = "We report on the possibility to build hierarchically organized three-dimensional (3D) titania spherical particles having high surface-to-volume-ratio, by aerosol processing of nanotubular building blocks. Morphology and crystal structure of titania based spherical assemblies, obtained in the temperature range from 150 to 650°C, were characterized by means of scanning and transmission electron microscopy, x-ray powder diffraction and Raman spectroscopy. Initial shape of 1D building units, nanotubes, was well preserved in the spherical assemblies processed at 150 and 450°C. Processing at 650°C resulted in a collapse of the nanotubular building blocks and formation of the assemblies of irregularly shaped TiO2 nanoparticles. Structural analysis revealed several phase transitions in titania spherical assemblies in course with the temperature increase indicating possibility of in-situ phase composition adjustment during aerosol processing. © 2015 Elsevier Ltd and Techna Group S.r.l.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Spherical assemblies of titania nanotubes generated through aerosol processing",
pages = "14754-14759",
volume = "41",
number = "10, Part B",
doi = "10.1016/j.ceramint.2015.07.205"
}
Jovanović, D. J., Dugandžić, I., Ćirić Marjanović, G., Radetić, T., Ahrenkiel, S. P., Milošević, O., Nedeljković, J., Šaponjić, Z.,& Mančić, L. (2015). Spherical assemblies of titania nanotubes generated through aerosol processing.
Ceramics InternationalElsevier., 41(10, Part B), 14754-14759.
https://doi.org/10.1016/j.ceramint.2015.07.205
Jovanović DJ, Dugandžić I, Ćirić Marjanović G, Radetić T, Ahrenkiel SP, Milošević O, Nedeljković J, Šaponjić Z, Mančić L. Spherical assemblies of titania nanotubes generated through aerosol processing. Ceramics International. 2015;41(10, Part B):14754-14759
Jovanović Dragana J., Dugandžić Ivan, Ćirić Marjanović Gordana, Radetić Tamara, Ahrenkiel Scott P., Milošević Olivera, Nedeljković Jovan, Šaponjić Zoran, Mančić Lidija, "Spherical assemblies of titania nanotubes generated through aerosol processing" 41, no. 10, Part B (2015):14754-14759,
https://doi.org/10.1016/j.ceramint.2015.07.205 .
1
2
2
2

Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine

Dugandžić, Ivan; Jovanović, Dragana J.; Mančić, Lidija; Milošević, Olivera; Ahrenkiel, Scott P.; Šaponjić, Zoran; Nedeljković, Jovan

(2013)

TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Jovanović, Dragana J.
AU  - Mančić, Lidija
AU  - Milošević, Olivera
AU  - Ahrenkiel, Scott P.
AU  - Šaponjić, Zoran
AU  - Nedeljković, Jovan
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/344
AB  - Spherical, submicronic TiO2 powder particles were prepared in the low temperature process of ultrasonic spray pyrolysis (150 °C) by using as a precursor aqueous colloidal solutions consisting of surface modified 45 Å TiO2 nanoparticles with dopamine. Detailed structural and morphological characterization of colored submicronic TiO2 spheres was performed by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analysis and FTIR techniques. Also, optical characterization of both dopamine-modified TiO2 precursor nanoparticles and submicronic TiO2 powder particles was performed using absorption and diffuse reflectance spectroscopy, respectively. A significant decrease of the effective band gap (1.9 eV) in dopamine-modified TiO2 nanoparticles compared to the band gap of bulk material (3.2 eV) was preserved after formation of submicronic TiO2 powder particles in the process of ultrasonic spray pyrolysis under mild experimental conditions. Due to the nanostructured nature, surface-modified assemblage of TiO2 nanoparticles preserved unique ability to absorb light through charge transfer complex by photoexcitation of the ligand-to-TiO2 band, conventionally associated with extremely small TiO2 nanoparticles (d < 20 nm) whose surface Ti atoms, owing to the large curvature, have penta-coordinate geometry.
T2  - Materials Chemistry and Physics
T1  - Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine
SP  - 233
EP  - 239
VL  - 143
IS  - 1
DO  - 10.1016/j.matchemphys.2013.08.058
ER  - 
@article{
author = "Dugandžić, Ivan and Jovanović, Dragana J. and Mančić, Lidija and Milošević, Olivera and Ahrenkiel, Scott P. and Šaponjić, Zoran and Nedeljković, Jovan",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/344",
abstract = "Spherical, submicronic TiO2 powder particles were prepared in the low temperature process of ultrasonic spray pyrolysis (150 °C) by using as a precursor aqueous colloidal solutions consisting of surface modified 45 Å TiO2 nanoparticles with dopamine. Detailed structural and morphological characterization of colored submicronic TiO2 spheres was performed by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser particle size analysis and FTIR techniques. Also, optical characterization of both dopamine-modified TiO2 precursor nanoparticles and submicronic TiO2 powder particles was performed using absorption and diffuse reflectance spectroscopy, respectively. A significant decrease of the effective band gap (1.9 eV) in dopamine-modified TiO2 nanoparticles compared to the band gap of bulk material (3.2 eV) was preserved after formation of submicronic TiO2 powder particles in the process of ultrasonic spray pyrolysis under mild experimental conditions. Due to the nanostructured nature, surface-modified assemblage of TiO2 nanoparticles preserved unique ability to absorb light through charge transfer complex by photoexcitation of the ligand-to-TiO2 band, conventionally associated with extremely small TiO2 nanoparticles (d < 20 nm) whose surface Ti atoms, owing to the large curvature, have penta-coordinate geometry.",
journal = "Materials Chemistry and Physics",
title = "Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine",
pages = "233-239",
volume = "143",
number = "1",
doi = "10.1016/j.matchemphys.2013.08.058"
}
Dugandžić, I., Jovanović, D. J., Mančić, L., Milošević, O., Ahrenkiel, S. P., Šaponjić, Z.,& Nedeljković, J. (2013). Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine.
Materials Chemistry and Physics, 143(1), 233-239.
https://doi.org/10.1016/j.matchemphys.2013.08.058
Dugandžić I, Jovanović DJ, Mančić L, Milošević O, Ahrenkiel SP, Šaponjić Z, Nedeljković J. Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine. Materials Chemistry and Physics. 2013;143(1):233-239
Dugandžić Ivan, Jovanović Dragana J., Mančić Lidija, Milošević Olivera, Ahrenkiel Scott P., Šaponjić Zoran, Nedeljković Jovan, "Ultrasonic spray pyrolysis of surface modified TiO2 nanoparticles with dopamine" 143, no. 1 (2013):233-239,
https://doi.org/10.1016/j.matchemphys.2013.08.058 .
1
26
27
28

Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption

Dugandžić, Ivan; Jovanović, Dragana J.; Mančić, Lidija; Zheng, Nan; Ahrenkiel, Scott P.; Milošević, Olivera; Šaponjić, Zoran; Nedeljković, Jovan

(Amsterdam : Springer Netherlands, 2012)

TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Jovanović, Dragana J.
AU  - Mančić, Lidija
AU  - Zheng, Nan
AU  - Ahrenkiel, Scott P.
AU  - Milošević, Olivera
AU  - Šaponjić, Zoran
AU  - Nedeljković, Jovan
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/464
AB  - Spherical, submicronic TiO2 assemblage with high specific surface area and controllable phase composition was prepared in the process of ultrasonic spray drying/pyrolysis in a wide temperature range (150–800 °C) by using as a precursor aqueous colloidal solution consisting of TiO2 nanoparticles (4.5 nm). Submicronic, soft and grained spherical TiO2 particles (d = 370–500 nm) comprising clustered nanocrystals (<10 nm) were obtained at low processing temperature, while particle densification, intensive growth of the clustered primary units and anatase-to-rutile transformation (~30 wt%) were observed at the higher temperatures. Detailed structural and morphological characterisation were performed by X-ray powder diffraction, scanning and field emission electron microscopy, transmission electron microscopy, and laser particle size analysis. Moreover, the surface modification of TiO2 particles through the formation of charge-transfer (CT) complex was achieved with different ligands: ascorbic acid, dopamine, catechol, 2,3-dihydroxynaphthalene, and anthrarobin. Optical properties of the surface-modified TiO2 particles were studied by using diffuse reflection spectroscopy. The binding structure between the surface titanium atoms and different ligands was determined by using Fourier transform infrared spectroscopy. The formation of CT complexes induced significant red shift of optical absorption in comparison to unmodified TiO2 particles.
PB  - Amsterdam : Springer Netherlands
T2  - Journal of Nanoparticle Research
T1  - Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption
SP  - 1157
VL  - 14
DO  - 10.1007/s11051-012-1157-1
ER  - 
@article{
author = "Dugandžić, Ivan and Jovanović, Dragana J. and Mančić, Lidija and Zheng, Nan and Ahrenkiel, Scott P. and Milošević, Olivera and Šaponjić, Zoran and Nedeljković, Jovan",
year = "2012",
url = "http://dais.sanu.ac.rs/123456789/464",
abstract = "Spherical, submicronic TiO2 assemblage with high specific surface area and controllable phase composition was prepared in the process of ultrasonic spray drying/pyrolysis in a wide temperature range (150–800 °C) by using as a precursor aqueous colloidal solution consisting of TiO2 nanoparticles (4.5 nm). Submicronic, soft and grained spherical TiO2 particles (d = 370–500 nm) comprising clustered nanocrystals (<10 nm) were obtained at low processing temperature, while particle densification, intensive growth of the clustered primary units and anatase-to-rutile transformation (~30 wt%) were observed at the higher temperatures. Detailed structural and morphological characterisation were performed by X-ray powder diffraction, scanning and field emission electron microscopy, transmission electron microscopy, and laser particle size analysis. Moreover, the surface modification of TiO2 particles through the formation of charge-transfer (CT) complex was achieved with different ligands: ascorbic acid, dopamine, catechol, 2,3-dihydroxynaphthalene, and anthrarobin. Optical properties of the surface-modified TiO2 particles were studied by using diffuse reflection spectroscopy. The binding structure between the surface titanium atoms and different ligands was determined by using Fourier transform infrared spectroscopy. The formation of CT complexes induced significant red shift of optical absorption in comparison to unmodified TiO2 particles.",
publisher = "Amsterdam : Springer Netherlands",
journal = "Journal of Nanoparticle Research",
title = "Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption",
pages = "1157",
volume = "14",
doi = "10.1007/s11051-012-1157-1"
}
Dugandžić, I., Jovanović, D. J., Mančić, L., Zheng, N., Ahrenkiel, S. P., Milošević, O., Šaponjić, Z.,& Nedeljković, J. (2012). Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption.
Journal of Nanoparticle ResearchAmsterdam : Springer Netherlands., 14, 1157.
https://doi.org/10.1007/s11051-012-1157-1
Dugandžić I, Jovanović DJ, Mančić L, Zheng N, Ahrenkiel SP, Milošević O, Šaponjić Z, Nedeljković J. Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption. Journal of Nanoparticle Research. 2012;14:1157
Dugandžić Ivan, Jovanović Dragana J., Mančić Lidija, Zheng Nan, Ahrenkiel Scott P., Milošević Olivera, Šaponjić Zoran, Nedeljković Jovan, "Surface modification of submicronic TiO2 particles prepared by ultrasonic spray pyrolysis for visible light absorption" 14 (2012):1157,
https://doi.org/10.1007/s11051-012-1157-1 .
15
15
17