Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2018 (1)
Version
Access

Digilio, G.

Link to this page

Authority KeyName Variants
5e0d713c-23b7-42fc-90ef-da1582496d4a
  • Digilio, G. (1)
Projects

Author's Bibliography

Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants

Capuana, Federico; Padovan, Sergio; Grange, Cristina; Catanzaro, Valeria; Cutrin, J. C.; Stevanović, Magdalena; Filipović, Nenad; Digilio, G.

(European Society for Molecular Imaging, 2018)

TY  - CONF
AU  - Capuana, Federico
AU  - Padovan, Sergio
AU  - Grange, Cristina
AU  - Catanzaro, Valeria
AU  - Cutrin, J. C.
AU  - Stevanović, Magdalena
AU  - Filipović, Nenad
AU  - Digilio, G.
PY  - 2018
UR  - http://eventclass.org/contxt_emim2018/online-program/session?s=101#153
UR  - http://dais.sanu.ac.rs/123456789/4667
AB  - Introduction: Cell encapsulation by hydrogels is intended to shield transplanted cells from the host hostile environment by preventing the infiltration of host immune cells. Cell scaffolding by solid biocompatible microparticles is intended to provide a structural support to implanted cells and to mimic the extracellular matrix, allowing cells to proliferate and/or differentiate in the desired way. We present strategies to label scaffolding biomaterials with microenvironment responsive MRI probes, for applications in the follow-up of cell transplants.

Methods: Microparticles (MPs) based on PLGA/chitosan were incorporated with gadolinium fluoride nanoparticles (GdNPs), as the MRI T1-contrast agent. The system is designed such to release Gd-NPs in the extracellular matrix (ECM), thus activating MRI contrast, unless MPs are attacked by the immune system (Foreign Body Response, FBR). To proof the concept, PLGA-based MPs were seeded with hMSCs and implanted into either immunocompetent or immunocompromised mice, and the transplants were followed-up by MRI for three weeks. Ex-vivo histologic assessment was carried out at the end of the follow-up.

Results/Discussion: Immunocompetent mice showed poor activation, if any, of MRI contrast within the cell graft. Immunocompromised mice, on the other hand, showed a progressive activation of MRI contrast. Ex-vivo histology showed extensive FBR directed against microparticles in immunocompetent mice, with some surviving hMSCs in the ECM but not on the scaffold surface. No significant FBR was detected in immunocompromised mice, and hMSCs were still adhering to the scaffolds.

Conclusions: The proposed system is able to assess whether or not cell grafts are subjected to innate immune response, an event that is likely correlated to the loss of transplanted cells.
PB  - European Society for Molecular Imaging
C3  - European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program
T1  - Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants
ER  - 
@conference{
author = "Capuana, Federico and Padovan, Sergio and Grange, Cristina and Catanzaro, Valeria and Cutrin, J. C. and Stevanović, Magdalena and Filipović, Nenad and Digilio, G.",
year = "2018",
url = "http://eventclass.org/contxt_emim2018/online-program/session?s=101#153, http://dais.sanu.ac.rs/123456789/4667",
abstract = "Introduction: Cell encapsulation by hydrogels is intended to shield transplanted cells from the host hostile environment by preventing the infiltration of host immune cells. Cell scaffolding by solid biocompatible microparticles is intended to provide a structural support to implanted cells and to mimic the extracellular matrix, allowing cells to proliferate and/or differentiate in the desired way. We present strategies to label scaffolding biomaterials with microenvironment responsive MRI probes, for applications in the follow-up of cell transplants.

Methods: Microparticles (MPs) based on PLGA/chitosan were incorporated with gadolinium fluoride nanoparticles (GdNPs), as the MRI T1-contrast agent. The system is designed such to release Gd-NPs in the extracellular matrix (ECM), thus activating MRI contrast, unless MPs are attacked by the immune system (Foreign Body Response, FBR). To proof the concept, PLGA-based MPs were seeded with hMSCs and implanted into either immunocompetent or immunocompromised mice, and the transplants were followed-up by MRI for three weeks. Ex-vivo histologic assessment was carried out at the end of the follow-up.

Results/Discussion: Immunocompetent mice showed poor activation, if any, of MRI contrast within the cell graft. Immunocompromised mice, on the other hand, showed a progressive activation of MRI contrast. Ex-vivo histology showed extensive FBR directed against microparticles in immunocompetent mice, with some surviving hMSCs in the ECM but not on the scaffold surface. No significant FBR was detected in immunocompromised mice, and hMSCs were still adhering to the scaffolds.

Conclusions: The proposed system is able to assess whether or not cell grafts are subjected to innate immune response, an event that is likely correlated to the loss of transplanted cells.",
publisher = "European Society for Molecular Imaging",
journal = "European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program",
title = "Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants"
}
Capuana, F., Padovan, S., Grange, C., Catanzaro, V., Cutrin, J. C., Stevanović, M., Filipović, N.,& Digilio, G. (2018). Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants.
European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online ProgramEuropean Society for Molecular Imaging..
Capuana F, Padovan S, Grange C, Catanzaro V, Cutrin JC, Stevanović M, Filipović N, Digilio G. Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants. European Molecular Imaging Meeting - EMIM 2018, March 20-23, Kursaal San Sebastian, Spain : Online Program. 2018;
Capuana Federico, Padovan Sergio, Grange Cristina, Catanzaro Valeria, Cutrin J. C., Stevanović Magdalena, Filipović Nenad, Digilio G., "Biocompatible Materials labelled with Microenvironment Responsive MRI Probes for the follow-up of Cell Transplants" (2018)