Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2020 (2)
2019 (1)
Version

Radović, Ivana

Link to this page

Authority KeyName Variants
b457f830-26c1-47f1-aa90-04318a602983
  • Radović, Ivana (3)
Projects

Author's Bibliography

The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers

Mitić, Vojislav V.; Lazović, Goran; Lu, Chun-An; Paunović, Vesna; Radović, Ivana; Stajčić, Aleksandar; Vlahović, Branislav

(Basel : MDPI, 2020)

TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Lu, Chun-An
AU  - Paunović, Vesna
AU  - Radović, Ivana
AU  - Stajčić, Aleksandar
AU  - Vlahović, Branislav
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8957
AB  - The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors. © 2020 by the authors.
PB  - Basel : MDPI
T2  - Applied Sciences (Switzerland)
T1  - The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers
SP  - 3485
VL  - 10
IS  - 10
DO  - 10.3390/app10103485
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Lu, Chun-An and Paunović, Vesna and Radović, Ivana and Stajčić, Aleksandar and Vlahović, Branislav",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8957",
abstract = "The BaTiO3 ceramics applications based on electronic properties have very high gradient scientific and industrial-technological interests. Our scientific research has been based on nano BaTiO3 modified with Yttrium based organometallic salt (MOD-Y). The samples have been consolidated at a sintering temperature of 1350 °C. Within the study, the new frontiers for different electronic properties between the layers of BaTiO3 grains have been introduced. The research target was grain boundary investigations and the influence on dielectric properties. After scanning electron microscopy and dielectric measurements, it has been established that modified BaTiO3 samples with larger grains showed a better compact state that led to a higher dielectric constant value. DC bias stability was also investigated and showed a connection between the grain size and capacitance stability. Analyses of functions that could approximate experimental curves were successfully employed. Practical application of fractal corrections was performed, based on surface (αs) and pore size (αp) corrections, which resulted in obtainment of the relation between the capacitance and Curie temperature. Successful introduction of fractal corrections for capacitance-Curie temperature dependence for a set of experimental data is an important step towards further miniaturization of intergranular capacitors. © 2020 by the authors.",
publisher = "Basel : MDPI",
journal = "Applied Sciences (Switzerland)",
title = "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers",
pages = "3485",
volume = "10",
number = "10",
doi = "10.3390/app10103485"
}
Mitić, V. V., Lazović, G., Lu, C., Paunović, V., Radović, I., Stajčić, A.,& Vlahović, B. (2020). The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers.
Applied Sciences (Switzerland)Basel : MDPI., 10(10), 3485.
https://doi.org/10.3390/app10103485
Mitić VV, Lazović G, Lu C, Paunović V, Radović I, Stajčić A, Vlahović B. The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers. Applied Sciences (Switzerland). 2020;10(10):3485
Mitić Vojislav V., Lazović Goran, Lu Chun-An, Paunović Vesna, Radović Ivana, Stajčić Aleksandar, Vlahović Branislav, "The Nano-Scale Modified BaTiO3 Morphology Influence on Electronic Properties and Ceramics Fractal Nature Frontiers" 10, no. 10 (2020):3485,
https://doi.org/10.3390/app10103485 .
1
1
1

Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization

Dodevski, Vladimir; Pagnacco, Maja C.; Radović, Ivana; Rosić, Milena; Janković, Bojan; Stojmenović, Marija; Mitić, Vojislav V.

(Elsevier, 2020)

TY  - JOUR
AU  - Dodevski, Vladimir
AU  - Pagnacco, Maja C.
AU  - Radović, Ivana
AU  - Rosić, Milena
AU  - Janković, Bojan
AU  - Stojmenović, Marija
AU  - Mitić, Vojislav V.
PY  - 2020
UR  - http://dais.sanu.ac.rs/123456789/8726
AB  - The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.
PB  - Elsevier
T2  - Materials Chemistry and Physics
T1  - Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization
SP  - 122768
VL  - 245
DO  - 10.1016/j.matchemphys.2020.122768
ER  - 
@article{
author = "Dodevski, Vladimir and Pagnacco, Maja C. and Radović, Ivana and Rosić, Milena and Janković, Bojan and Stojmenović, Marija and Mitić, Vojislav V.",
year = "2020",
url = "http://dais.sanu.ac.rs/123456789/8726",
abstract = "The aim of this research was to obtain a carbon solid residue by the carbonization process of biomass in an inert atmosphere which, through physical activation and chemical treatment (using TEOS - tetraethyl orthosilicate) would allow creation of highly porous and spatially distinct ordered bio-SiC ceramics. The results of carbonization experiments at several operating temperatures and activation of carbons with multiple-cycle treatments TEOS clearly showed the possibility of obtaining SiC nano-structures, after performing the carbothermal reduction at 1400 °C. The increase in the activation temperature and the duration time starts the development of the SiC particles inside the porous structure. The XRPD analysis showed that the major SiC polytype has cubic SiC (β-SiC) structure and remainder is hexagonal SiC polytypic (α-SiC) structure. It was established that the carbons obtained from carbonization of the Platanus orientalis L. plane tree fruit (PTF) precursor and activated at 850 °C with longer holding times (1 and 2 h) exhibit β-SiC (cubic) nano-wires. A possible nano-wires increment mechanism was suggested. The obtained results represent significant contribution in understanding the process as well as the main characteristics of SiC nano-materials and their possible applications.",
publisher = "Elsevier",
journal = "Materials Chemistry and Physics",
title = "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization",
pages = "122768",
volume = "245",
doi = "10.1016/j.matchemphys.2020.122768"
}
Dodevski, V., Pagnacco, M. C., Radović, I., Rosić, M., Janković, B., Stojmenović, M.,& Mitić, V. V. (2020). Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization.
Materials Chemistry and PhysicsElsevier., 245, 122768.
https://doi.org/10.1016/j.matchemphys.2020.122768
Dodevski V, Pagnacco MC, Radović I, Rosić M, Janković B, Stojmenović M, Mitić VV. Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization. Materials Chemistry and Physics. 2020;245:122768
Dodevski Vladimir, Pagnacco Maja C., Radović Ivana, Rosić Milena, Janković Bojan, Stojmenović Marija, Mitić Vojislav V., "Characterization of silicon carbide ceramics obtained from porous carbon structure achieved by plant carbonization" 245 (2020):122768,
https://doi.org/10.1016/j.matchemphys.2020.122768 .
1
1
1

Theoretical and experimental study of polycrystalline phases obtained by the nanometric ZnTiO3 powder sintering

Labus, Nebojša; Rosić, Milena; Čebela, Maria; Jordanov, Dragana; Dodevski, Dragan; Radović, Ivana

(Belgrade : Institute for Multidisciplinary Research, 2019)

TY  - CONF
AU  - Labus, Nebojša
AU  - Rosić, Milena
AU  - Čebela, Maria
AU  - Jordanov, Dragana
AU  - Dodevski, Dragan
AU  - Radović, Ivana
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/7001
AB  - In this study we have combined two research methods: structure prediction of ZnTiO3 using computational SPuDS software, and the characterization of binary oxides obtained from ZnO TiO2 system. Pure nanosized ZnTiO3 (99.5%), was compacted in cylindrical shape specimens by uniaxial double sided compaction and then sintered in air atmosphere in a dilatometric device [1,2]. One compact was sintered up to 915 °C to retain metastabile ZnTiO3 and held 5 minutes on that temperature, and another one at the same conditions, but now up to 970 °C to induce phase transition and to obtain stabile Zn2TiO4 and TiO2 according to phase diagram [2]. Reheated samples obtained at different characteristic temperatures in air were analyzed by X-ray diffraction (XRD). The infrared attenuated total reflectivity measurements confirmed XRD results. In order to estimate theoretical stability of these perovskite structure, Goldschmidt tolerance factor Gt and global instability index GII were calculated. Furthermore, the Ti valence states were determined by bond valence calculations (BVC). Also, we have investigated the formation of new phases (Zn2Ti3O8, TiO2 and Zn2TiO4) originating from ZnTiO3 with temperature change, as well as the relation between the crystal structures which have been predicted and the structure of the phases we have experimentally observed.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Theoretical and experimental study of polycrystalline phases obtained by the nanometric ZnTiO3 powder sintering
SP  - 110
EP  - 110
ER  - 
@conference{
author = "Labus, Nebojša and Rosić, Milena and Čebela, Maria and Jordanov, Dragana and Dodevski, Dragan and Radović, Ivana",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/7001",
abstract = "In this study we have combined two research methods: structure prediction of ZnTiO3 using computational SPuDS software, and the characterization of binary oxides obtained from ZnO TiO2 system. Pure nanosized ZnTiO3 (99.5%), was compacted in cylindrical shape specimens by uniaxial double sided compaction and then sintered in air atmosphere in a dilatometric device [1,2]. One compact was sintered up to 915 °C to retain metastabile ZnTiO3 and held 5 minutes on that temperature, and another one at the same conditions, but now up to 970 °C to induce phase transition and to obtain stabile Zn2TiO4 and TiO2 according to phase diagram [2]. Reheated samples obtained at different characteristic temperatures in air were analyzed by X-ray diffraction (XRD). The infrared attenuated total reflectivity measurements confirmed XRD results. In order to estimate theoretical stability of these perovskite structure, Goldschmidt tolerance factor Gt and global instability index GII were calculated. Furthermore, the Ti valence states were determined by bond valence calculations (BVC). Also, we have investigated the formation of new phases (Zn2Ti3O8, TiO2 and Zn2TiO4) originating from ZnTiO3 with temperature change, as well as the relation between the crystal structures which have been predicted and the structure of the phases we have experimentally observed.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Theoretical and experimental study of polycrystalline phases obtained by the nanometric ZnTiO3 powder sintering",
pages = "110-110"
}
Labus, N., Rosić, M., Čebela, M., Jordanov, D., Dodevski, D.,& Radović, I. (2019). Theoretical and experimental study of polycrystalline phases obtained by the nanometric ZnTiO3 powder sintering.
Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, SerbiaBelgrade : Institute for Multidisciplinary Research., 110-110.
Labus N, Rosić M, Čebela M, Jordanov D, Dodevski D, Radović I. Theoretical and experimental study of polycrystalline phases obtained by the nanometric ZnTiO3 powder sintering. Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:110-110
Labus Nebojša, Rosić Milena, Čebela Maria, Jordanov Dragana, Dodevski Dragan, Radović Ivana, "Theoretical and experimental study of polycrystalline phases obtained by the nanometric ZnTiO3 powder sintering" (2019):110-110