Sort By
Publication Year
Deposit Date
Title
Type
Access
Publication Year
2019 (1)
2018 (1)
Version
Access

Cvetanović Zobenica, Katarina

Link to this page

Authority KeyName Variants
3d1ae093-01b5-41ca-8cd0-a9149e8c34da
  • Cvetanović Zobenica, Katarina (2)
Projects

Author's Bibliography

Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors

Jokić, Ivana; Radulović, Katarina; Frantlović, Miloš; Đurić, Zoran G.; Cvetanović Zobenica, Katarina; Krstajić, Predrag

(Belgrade : ETRAN, 2019)

TY  - CONF
AU  - Jokić, Ivana
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
AU  - Đurić, Zoran G.
AU  - Cvetanović Zobenica, Katarina
AU  - Krstajić, Predrag
PY  - 2019
UR  - http://dais.sanu.ac.rs/123456789/6961
AB  - Detection limits in microfluidic chemical and biological sensors, which determine the range of analyte concentrations reliably detectable by the sensor, are important sensor parameters. The lower limit of detection, defined as the lowest concentration that can be distinguished from noise, has its minimum determined by the fundamental adsorption-desorption (AD) noise, inevitable in adsorption-based devices. In this work, we analyze this fundamental detection limit, particularly considering the influence of mass transfer processes in microfluidic devices. For that purpose, we derive the expression for the sensor’s signal-to-noise ratio (SNR), which takes into account the AD noise, and then the equation for the minimal analyte concentration at which the SNR has a sufficiently high value for reliable analyte detection. Subsequently, we analyze the mass transfer influence on the sensor’s maximal achievable signal-to-noise ratio and on the fundamental detection limit. The results of the analysis show a significant mass transfer influence on these important sensor performance metrics. They also provide guidelines for achieving the sensor’s best possible detection performance through the optimization of the sensor design and operating conditions.
PB  - Belgrade : ETRAN
PB  - Belgrade :Academic Mind
C3  - Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine
T1  - Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors
SP  - 571
EP  - 574
ER  - 
@conference{
author = "Jokić, Ivana and Radulović, Katarina and Frantlović, Miloš and Đurić, Zoran G. and Cvetanović Zobenica, Katarina and Krstajić, Predrag",
year = "2019",
url = "http://dais.sanu.ac.rs/123456789/6961",
abstract = "Detection limits in microfluidic chemical and biological sensors, which determine the range of analyte concentrations reliably detectable by the sensor, are important sensor parameters. The lower limit of detection, defined as the lowest concentration that can be distinguished from noise, has its minimum determined by the fundamental adsorption-desorption (AD) noise, inevitable in adsorption-based devices. In this work, we analyze this fundamental detection limit, particularly considering the influence of mass transfer processes in microfluidic devices. For that purpose, we derive the expression for the sensor’s signal-to-noise ratio (SNR), which takes into account the AD noise, and then the equation for the minimal analyte concentration at which the SNR has a sufficiently high value for reliable analyte detection. Subsequently, we analyze the mass transfer influence on the sensor’s maximal achievable signal-to-noise ratio and on the fundamental detection limit. The results of the analysis show a significant mass transfer influence on these important sensor performance metrics. They also provide guidelines for achieving the sensor’s best possible detection performance through the optimization of the sensor design and operating conditions.",
publisher = "Belgrade : ETRAN, Belgrade :Academic Mind",
journal = "Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine",
title = "Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors",
pages = "571-574"
}
Jokić, I., Radulović, K., Frantlović, M., Đurić, Z. G., Cvetanović Zobenica, K.,& Krstajić, P. (2019). Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors.
Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godineBelgrade :Academic Mind., 571-574.
Jokić I, Radulović K, Frantlović M, Đurić ZG, Cvetanović Zobenica K, Krstajić P. Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors. Proceedings of Papers – 6th International Conference on Electrical, Electronic and Computing Engineering, IcETRAN 2019, Silver Lake, Serbia, June 03 – 06, 2019 / Zbornik radova - 63. Konferencija za elektroniku, telekomunikacije, računarstvo, automatiku i nuklearnu tehniku, Srebrno jezero, 03 – 06. juna, 2019. godine. 2019;:571-574
Jokić Ivana, Radulović Katarina, Frantlović Miloš, Đurić Zoran G., Cvetanović Zobenica Katarina, Krstajić Predrag, "Analysis of the Fundamental Detection Limit in Microfluidic Chemical and Biological Sensors" (2019):571-574

Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors

Jokić, Ivana; Đurić, Zoran G.; Radulović, Katarina; Frantlović, Miloš; Krstajić, Predrag; Cvetanović Zobenica, Katarina

(ETRAN, 2018)

TY  - CONF
AU  - Jokić, Ivana
AU  - Đurić, Zoran G.
AU  - Radulović, Katarina
AU  - Frantlović, Miloš
AU  - Krstajić, Predrag
AU  - Cvetanović Zobenica, Katarina
PY  - 2018
UR  - https://www.etran.rs/2018/IcETRAN/News/IcETRAN%20sumarni%20program%20sekcija_Ver.%204.3%20(1).pdf
UR  - http://dais.sanu.ac.rs/123456789/4630
AB  - In this paper we first give a short review of two stochastic models describing both the expected value and variance of the random number of adsorbed particles in microfluidic adsorption-based chemical and biological sensors. One model takes into account the influence of coupling of stochastic adsorptiondesorption processes and mass transfer on the change of the number of adsorbed particles, while the other neglects the influence of mass transfer. Subsequently, by using the two models, we perform the analysis of the expected value and variance, as well as the sensor's signal-to-noise ratio, after reaching the steady state of all transient processes. We compare the results obtained by using the different models, and determine conditions for their application. We estimate the influences of the sensing surface area and the concentration of target particles on statistical parameters of sensor response and signal-to-noise ratio, considering the cases where mass transfer is significant, and those where it is not. We particularly analyze the mass transfer influence on the expected value, variance and signal-to-noise ratio. Such analysis does not exist in the available literature. The presented analysis yields new knowledge about the stochastic response of adsorption-based sensors, and it is significant for their optimization in order to achieve reliable analyte detection and improved sensing performance.
PB  - ETRAN
C3  - IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: Program
T1  - Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors
ER  - 
@conference{
author = "Jokić, Ivana and Đurić, Zoran G. and Radulović, Katarina and Frantlović, Miloš and Krstajić, Predrag and Cvetanović Zobenica, Katarina",
year = "2018",
url = "https://www.etran.rs/2018/IcETRAN/News/IcETRAN%20sumarni%20program%20sekcija_Ver.%204.3%20(1).pdf, http://dais.sanu.ac.rs/123456789/4630",
abstract = "In this paper we first give a short review of two stochastic models describing both the expected value and variance of the random number of adsorbed particles in microfluidic adsorption-based chemical and biological sensors. One model takes into account the influence of coupling of stochastic adsorptiondesorption processes and mass transfer on the change of the number of adsorbed particles, while the other neglects the influence of mass transfer. Subsequently, by using the two models, we perform the analysis of the expected value and variance, as well as the sensor's signal-to-noise ratio, after reaching the steady state of all transient processes. We compare the results obtained by using the different models, and determine conditions for their application. We estimate the influences of the sensing surface area and the concentration of target particles on statistical parameters of sensor response and signal-to-noise ratio, considering the cases where mass transfer is significant, and those where it is not. We particularly analyze the mass transfer influence on the expected value, variance and signal-to-noise ratio. Such analysis does not exist in the available literature. The presented analysis yields new knowledge about the stochastic response of adsorption-based sensors, and it is significant for their optimization in order to achieve reliable analyte detection and improved sensing performance.",
publisher = "ETRAN",
journal = "IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: Program",
title = "Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors"
}
Jokić, I., Đurić, Z. G., Radulović, K., Frantlović, M., Krstajić, P.,& Cvetanović Zobenica, K. (2018). Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors.
IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: ProgramETRAN..
Jokić I, Đurić ZG, Radulović K, Frantlović M, Krstajić P, Cvetanović Zobenica K. Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors. IcETRAN & ETRAN 2018, Palić 11-14. 06. 2018: Program. 2018;
Jokić Ivana, Đurić Zoran G., Radulović Katarina, Frantlović Miloš, Krstajić Predrag, Cvetanović Zobenica Katarina, "Steady-state analysis of stochastic time response of chemical and biological microfluidic sensors" (2018)